Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room B3B69, MSC1088, Bethesda, MD 20892-1088, USA.
Nucl Med Biol. 2013 Apr;40(3):321-30. doi: 10.1016/j.nucmedbio.2012.12.003. Epub 2013 Feb 9.
We describe a prototype positron projection imager (PPI) for visualizing the whole-body biodistribution of positron-emitting compounds in mouse-size animals. The final version of the PPI will be integrated into the MONICA portable dual-gamma camera system to allow the user to interchangeably image either single photon or positron-emitting compounds in a shared software and hardware environment.
A mouse is placed in the mid-plane between two identical, opposed, pixelated LYSO arrays separated by 21.8-cm and in time coincidence. An image of the distribution of positron decays in the animal is formed on this mid-plane by coincidence events that fall within a small cone angle perpendicular to the two detectors and within a user-specified energy window. We measured the imaging performance of this device with phantoms and in tests performed in mice injected with various compounds labeled with positron-emitting isotopes.
Representative performance measurements yielded the following results (energy window 250-650keV, cone angle 3.5°): resolution in the image mid-plane, 1.66-mm (FWHM), resolution ±1.5-cm above and below the image plane, 2.2-mm (FWHM), sensitivity: 0.237-cps/kBq (8.76-cps/μCi) (18)F (0.024% absolute). Energy resolution was 15.9% with a linear-count-rate operating range of 0-14.8MBq (0-400μCi) and a corrected sensitivity variation across the field-of-view of <3%. Whole-body distributions of [(18)F] FDG and [(18)F] fluoride were well visualized in mice of typical size.
Performance measurements and field studies indicate that the PPI is well suited to whole-body positron projection imaging of mice. When integrated into the MONICA gamma camera system, the PPI may be particularly useful early in the drug development cycle where, like MONICA, basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors (e.g., available imaging space, non-portability, and cost) may be limitations.
我们描述了一种正电子发射断层成像(PPI)原型,用于可视化小鼠大小的动物体内正电子发射化合物的全身生物分布。PPI 的最终版本将集成到 MONICA 便携式双伽马相机系统中,使用户能够在共享的软件和硬件环境中交替成像单光子或正电子发射化合物。
将一只老鼠放置在两个相同的、相对的、像素化的 LYSO 阵列之间的中平面上,两个阵列之间的距离为 21.8 厘米,并同时进行时间符合。通过落在两个探测器垂直的小锥形角内且在用户指定的能量窗口内的符合事件,在这个中平面上形成动物内正电子衰变分布的图像。我们使用体模和在注射了用正电子发射同位素标记的各种化合物的小鼠中进行的测试来测量该设备的成像性能。
代表性的性能测量结果如下(能量窗口 250-650keV,锥形角 3.5°):图像中平面的分辨率为 1.66mm(FWHM),图像平面上方和下方 1.5cm 的分辨率为 2.2mm(FWHM),灵敏度:0.237cps/kBq(8.76cps/μCi)(18)F(0.024%绝对)。能量分辨率为 15.9%,线性计数率工作范围为 0-14.8MBq(0-400μCi),视场中校正后的灵敏度变化<3%。典型大小的小鼠中[(18)F]FDG 和[(18)F]氟化物的全身分布得到了很好的可视化。
性能测量和现场研究表明,PPI 非常适合小鼠的全身正电子投影成像。当集成到 MONICA 伽马相机系统中时,PPI 可能特别有用,因为在药物开发早期,就像 MONICA 一样,基本的全身生物分布数据可以指导正在研究的药物的未来开发,而物流因素(例如,可用的成像空间、非便携性和成本)可能是限制因素。