Suppr超能文献

反刍动物甲烷排放量预测方程的建立。

Development of equations for predicting methane emissions from ruminants.

机构信息

Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.

出版信息

J Dairy Sci. 2013 Apr;96(4):2476-2493. doi: 10.3168/jds.2012-6095. Epub 2013 Feb 10.

Abstract

Ruminants contribute to global warming by releasing methane (CH4) gas by enteric fermentation. This has increased interest among animal scientists to develop and improve equations predicting CH4 production. The objectives of the current study were to collect a data set from respiration studies and to evaluate the effects of dietary and animal factors on CH4 production from diets that can safely be fed to dairy cows, using a mixed model regression analysis. Therefore, diets containing more than 75% concentrate on a dry matter (DM) basis were excluded from the analysis. The final data set included a total of 298 treatment means from 52 published papers with 207 cattle and 91 sheep diets. Dry matter intake per kilogram of body weight (DMIBW), organic matter digestibility estimated at the maintenance level of feeding (OMDm), and dietary concentrations of neutral detergent fiber (NDF), nonfiber carbohydrates (NFC), and ether extract (EE) were the variables of the best-fit equation predicting CH4 energy (CH4-E) as a proportion of gross energy intake (GE): CH4-E/GE (kJ/MJ)=-0.6 (±12.76) - 0.70 (±0.072) × DMIBW (g/kg) + 0.076 (±0.0118) × OMDm (g/kg) - 0.13 (±0.020) × EE (g/kg of DM) + 0.046 (±0.0097) × NDF (g/kg of DM) + 0.044 (±0.0094) × NFC (g/kg of DM), resulting in the lowest root mean square error adjusted for random study effect (adj. RMSE=3.26 kJ/MJ). Total CH4 production (L/d) in the cattle data set was closely related to DM intake. However, further inclusion of other variables improved the model: CH4 (L/d)=-64.0 (±35.0) + 26.0 (±1.02) × DM intake (kg/d) - 0.61 (±0.132) × DMI(2)(centered) + 0.25 (±0.051) × OMDm (g/kg) - 66.4 (±8.22) × EE intake (kg of DM/d) - 45.0 (±23.50) × NFC/(NDF + NFC), with adj. RMSE of 21.1 L/d. Cross-validation of the CH4-E/GE equation [observed CH4-E/GE=0.96 (±0.103) × predicted CH4-E/GE + 2.3 (±7.05); R(2)=0.85, adj. RMSE=3.38 kJ/MJ] indicated that differences in CH4 production between the diets could be predicted accurately. We conclude that feed intake is the main determinant of total CH4 production and that CH4-E/GE is negatively related to feeding level and dietary fat concentration and positively to diet digestibility, whereas dietary carbohydrate composition has only minor effects.

摘要

反刍动物通过肠道发酵释放甲烷(CH4)气体,从而导致全球变暖。这增加了动物科学家的兴趣,他们致力于开发和改进预测 CH4 产量的方程。本研究的目的是从呼吸研究中收集数据,并使用混合模型回归分析评估饮食和动物因素对奶牛安全饮食的 CH4 产量的影响。因此,基础干物质(DM)中含有 75%以上浓缩物的饮食被排除在分析之外。最终数据集包括 52 篇已发表论文中的 298 个处理平均值,涉及 207 头奶牛和 91 只绵羊的饮食。每公斤体重的干物质摄入量(DMIBW)、在饲养维持水平下估计的有机物消化率(OMDm)以及中性洗涤剂纤维(NDF)、非纤维碳水化合物(NFC)和乙醚提取物(EE)的饮食浓度是预测 CH4 能量(CH4-E)作为摄入总能比例的最佳拟合方程的变量:CH4-E/GE(kJ/MJ)=-0.6(±12.76)-0.70(±0.072)×DMIBW(g/kg)+0.076(±0.0118)×OMDm(g/kg)-0.13(±0.020)×EE(g/kg DM)+0.046(±0.0097)×NDF(g/kg DM)+0.044(±0.0094)×NFC(g/kg DM),导致随机研究效果调整后的最低均方根误差(adj. RMSE=3.26 kJ/MJ)。牛数据集的总 CH4 产量(L/d)与 DM 摄入量密切相关。然而,进一步纳入其他变量可以改善模型:CH4(L/d)=-64.0(±35.0)+26.0(±1.02)×DM 摄入量(kg/d)-0.61(±0.132)×DMI(2)(中心化)+0.25(±0.051)×OMDm(g/kg)-66.4(±8.22)×EE 摄入量(kg DM/d)-45.0(±23.50)×NFC/(NDF+NFC),adj. RMSE 为 21.1 L/d。CH4-E/GE 方程的交叉验证[观察到的 CH4-E/GE=0.96(±0.103)×预测 CH4-E/GE+2.3(±7.05);R²=0.85,adj. RMSE=3.38 kJ/MJ]表明,饮食之间的 CH4 产量差异可以准确预测。我们得出结论,饲料摄入量是总 CH4 产量的主要决定因素,CH4-E/GE 与饲养水平和饮食脂肪浓度呈负相关,与饮食消化率呈正相关,而饮食碳水化合物组成只有较小的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验