Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
mBio. 2013 Feb 12;4(1):e00620-12. doi: 10.1128/mBio.00620-12.
When microbes contaminate the macrophage cytoplasm, leukocytes undergo a proinflammatory death that is initiated by nucleotide-binding-domain-, leucine-rich-repeat-containing proteins (NLR proteins) that bind and activate caspase-1. We report that these inflammasome components also regulate autophagy, a vesicular pathway to eliminate cytosolic debris. In response to infection with flagellate Legionella pneumophila, C57BL/6J mouse macrophages equipped with caspase-1 and the NLR proteins NAIP5 and NLRC4 stimulated autophagosome turnover. A second trigger of inflammasome assembly, K(+) efflux, also rapidly activated autophagy in macrophages that produced caspase-1. Autophagy protects infected macrophages from pyroptosis, since caspase-1-dependent cell death occurred more frequently when autophagy was dampened pharmacologically by either 3-methyladenine or an inhibitor of the Atg4 protease. Accordingly, in addition to coordinating pyroptosis, both (pro-) caspase-1 protein and NLR components of inflammasomes equip macrophages to recruit autophagy, a disposal pathway that raises the threshold of contaminants necessary to trigger proinflammatory leukocyte death.
An exciting development in the innate-immunity field is the recognition that macrophages enlist autophagy to protect their cytoplasm from infection. Nutrient deprivation has long been known to induce autophagy; how infection triggers this disposal pathway is an active area of research. Autophagy is encountered by many of the intracellular pathogens that are known to trigger pyroptosis, an inflammatory cell death initiated when nucleotide-binding-domain-, leucine-rich-repeat-containing proteins (NLR proteins) activate caspase-1 within inflammasome complexes. Therefore, we tested the hypothesis that NLR proteins and caspase-1 also coordinate autophagy as a barrier to cytosolic infection. By exploiting classical bacterial and mouse genetics and kinetic assays of autophagy, we demonstrate for the first time that, when confronted with cytosolic contamination, primary mouse macrophages rely not only on the NLR proteins NAIP5 and NLRC4 but also on (pro-)caspase-1 protein to mount a rapid autophagic response that wards off proinflammatory cell death.
当微生物污染巨噬细胞质时,白细胞会发生促炎死亡,这种死亡是由核苷酸结合结构域富含亮氨酸重复蛋白(NLR 蛋白)引发的,这些蛋白结合并激活半胱天冬酶-1。我们报告称,这些炎症小体成分也调节自噬,这是一种消除细胞质碎片的囊泡途径。在感染鞭毛生物军团菌时,配备有半胱天冬酶-1和 NLR 蛋白 NAIP5 和 NLRC4 的 C57BL/6J 鼠巨噬细胞刺激自噬体周转。炎症小体组装的第二个触发因素,K+外流,也迅速激活了产生半胱天冬酶-1的巨噬细胞中的自噬。自噬使感染的巨噬细胞免受细胞焦亡的影响,因为当自噬通过 3-甲基腺嘌呤或 Atg4 蛋白酶抑制剂在药理学上受到抑制时,半胱天冬酶-1依赖性细胞死亡更频繁地发生。因此,除了协调细胞焦亡外,(前)半胱天冬酶-1蛋白和炎症小体的 NLR 成分还使巨噬细胞能够招募自噬,这是一种处置途径,可以提高引发促炎白细胞死亡所需的污染物阈值。
先天免疫领域的一个令人兴奋的发展是认识到巨噬细胞利用自噬来保护细胞质免受感染。营养剥夺长期以来一直被认为会诱导自噬;感染如何触发这种处置途径是一个活跃的研究领域。自噬被许多已知引发细胞焦亡的细胞内病原体遇到,细胞焦亡是一种炎症性细胞死亡,当核苷酸结合结构域富含亮氨酸重复蛋白(NLR 蛋白)在炎症小体复合物中激活半胱天冬酶-1时就会发生。因此,我们测试了 NLR 蛋白和半胱天冬酶-1是否也协调自噬作为细胞溶质感染的屏障的假设。通过利用经典的细菌和小鼠遗传学以及自噬的动力学测定,我们首次证明,当面对细胞溶质污染时,原代鼠巨噬细胞不仅依赖 NLR 蛋白 NAIP5 和 NLRC4,还依赖(前)半胱天冬酶-1 蛋白来快速启动自噬反应,从而阻止促炎细胞死亡。