1Neurobiology-Neurodegeneration and Repair Laboratory (N-NRL), National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Development. 2013 Mar;140(6):1330-41. doi: 10.1242/dev.086603. Epub 2013 Feb 13.
Dysfunction or death of photoreceptors is the primary cause of vision loss in retinal and macular degenerative diseases. As photoreceptors have an intimate relationship with the retinal pigment epithelium (RPE) for exchange of macromolecules, removal of shed membrane discs and retinoid recycling, an improved understanding of the development of the photoreceptor-RPE complex will allow better design of gene- and cell-based therapies. To explore the epigenetic contribution to retinal development we generated conditional knockout alleles of DNA methyltransferase 1 (Dnmt1) in mice. Conditional Dnmt1 knockdown in early eye development mediated by Rx-Cre did not produce lamination or cell fate defects, except in cones; however, the photoreceptors completely lacked outer segments despite near normal expression of phototransduction and cilia genes. We also identified disruption of RPE morphology and polarization as early as E15.5. Defects in outer segment biogenesis were evident with Dnmt1 exon excision only in RPE, but not when excision was directed exclusively to photoreceptors. We detected a reduction in DNA methylation of LINE1 elements (a measure of global DNA methylation) in developing mutant RPE as compared with neural retina, and of Tuba3a, which exhibited dramatically increased expression in mutant retina. These results demonstrate a unique function of DNMT1-mediated DNA methylation in controlling RPE apicobasal polarity and neural retina differentiation. We also establish a model to study the epigenetic mechanisms and signaling pathways that guide the modulation of photoreceptor outer segment morphogenesis by RPE during retinal development and disease.
感光细胞功能障碍或死亡是视网膜和黄斑退行性疾病导致视力丧失的主要原因。由于感光细胞与视网膜色素上皮(RPE)之间存在密切的关系,用于交换大分子、去除脱落的膜盘和视黄醇再循环,因此更好地了解感光细胞-RPE 复合物的发育将有助于更好地设计基于基因和细胞的治疗方法。为了探讨表观遗传对视网膜发育的贡献,我们在小鼠中生成了 DNA 甲基转移酶 1(Dnmt1)的条件性敲除等位基因。由 Rx-Cre 介导的早期眼发育中的条件性 Dnmt1 敲低不会产生分层或细胞命运缺陷,除了在锥体中;然而,尽管光转导和纤毛基因的表达几乎正常,但感光细胞完全缺乏外节。我们还发现 RPE 形态和极化早在 E15.5 就受到干扰。只有在 RPE 中切除 Dnmt1 外显子,才能观察到外节生物发生的缺陷,而当仅切除到感光细胞时则不会。与神经视网膜相比,我们在发育中的突变 RPE 中检测到 LINE1 元件(衡量整体 DNA 甲基化的指标)的 DNA 甲基化减少,而 Tuba3a 的 DNA 甲基化减少,Tuba3a 在突变视网膜中的表达显著增加。这些结果表明,DNMT1 介导的 DNA 甲基化在控制 RPE 顶底极性和神经视网膜分化方面具有独特的功能。我们还建立了一个模型来研究表观遗传机制和信号通路,这些机制和信号通路指导 RPE 在视网膜发育和疾病过程中对感光细胞外节形态发生的调节。