Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea.
Proteins. 2013 Jul;81(7):1156-65. doi: 10.1002/prot.24265. Epub 2013 Apr 10.
A set of grid type knowledge-based energy functions is introduced for ϕ-χ₁ , ψ-χ₁ , ϕ-ψ, and χ₁ -χ₂ torsion angle combinations. Boltzmann distribution is assumed for the torsion angle populations from protein X-ray structures, and the functions are named as statistical torsion angle potential energy functions. The grid points around periodic boundaries are duplicated to force periodicity, and the remedy relieves the derivative discontinuity problem. The devised functions rapidly improve the quality of model structures. The potential bias in the functions and the usefulness of additional secondary structure information are also investigated. The proposed guiding functions are expected to facilitate protein structure modeling, such as protein structure prediction, protein design, and structure refinement.
一组网格型基于知识的能量函数被引入到 ϕ-χ₁ 、 ψ-χ₁ 、 ϕ-ψ 和 χ₁ -χ₂ 扭转角组合中。从蛋白质 X 射线结构中,假定扭转角种群符合玻尔兹曼分布,这些函数被命名为统计扭转角势能函数。在周期性边界周围的网格点被复制以强制周期性,补救措施缓解了导数不连续的问题。所设计的函数可以快速提高模型结构的质量。还研究了函数中的潜在偏差以及附加二级结构信息的有用性。预计所提出的导向函数将有助于蛋白质结构建模,例如蛋白质结构预测、蛋白质设计和结构细化。