Suppr超能文献

预测药物重定位和多靶标药物发现的靶向多药理学。

Predicting targeted polypharmacology for drug repositioning and multi- target drug discovery.

机构信息

State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, P.R. China.

出版信息

Curr Med Chem. 2013;20(13):1646-61. doi: 10.2174/0929867311320130005.

Abstract

Prediction of polypharmacology of known drugs and new molecules against selected multiple targets is highly useful for finding new therapeutic applications of existing drugs (drug repositioning) and for discovering multi-target drugs with improved therapeutic efficacies by collective regulations of primary therapeutic targets, compensatory signalling and drug resistance mechanisms. In this review, we describe recent progresses in exploration of in-silico methods for predicting polypharmacology of known drugs and new molecules by means of structure-based (molecular docking, binding- site structural similarity, receptor-based pharmacophore searching), expression-based (expression profile/signature similarity disease-drug and drug-drug networks), ligand-based (similarity searching, side-effect similarity, QSAR, machine learning), and fragment-based approaches that have shown promising potential in facilitating drug repositioning and the discovery of multi-target drugs.

摘要

预测已知药物和新分子针对选定多个靶点的多药理学对于发现现有药物的新治疗应用(药物重定位)以及通过对主要治疗靶点、代偿性信号和耐药机制的集体调节来发现具有改善治疗效果的多靶药物非常有用。在这篇综述中,我们描述了最近在探索基于结构(分子对接、结合部位结构相似性、基于受体的药效基团搜索)、基于表达(表达谱/特征相似性疾病-药物和药物-药物网络)、基于配体(相似性搜索、副作用相似性、QSAR、机器学习)和基于片段的方法来预测已知药物和新分子的多药理学方面的进展,这些方法在促进药物重定位和发现多靶药物方面显示出了有希望的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验