Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland.
Front Neuroanat. 2013 Feb 19;7:1. doi: 10.3389/fnana.2013.00001. eCollection 2013.
The organization of connectivity in neuronal networks is fundamental to understanding the activity and function of neural networks and information processing in the brain. Recent studies show that the neocortex is not only organized in columns and layers but also, within these, into synaptically connected clusters of neurons (Ko et al., 2011; Perin et al., 2011). The recently discovered common neighbor rule, according to which the probability of any two neurons being synaptically connected grows with the number of their common neighbors, is an organizing principle for this local clustering. Here we investigated the theoretical constraints for how the spatial extent of neuronal axonal and dendritic arborization, heretofore described by morphological reach, the density of neurons and the size of the network determine cluster size and numbers within neural networks constructed according to the common neighbor rule. In the formulation we developed, morphological reach, cell density, and network size are sufficient to estimate how many neurons, on average, occur in a cluster and how many clusters exist in a given network. We find that cluster sizes do not grow indefinitely as network parameters increase, but tend to characteristic limiting values.
神经元网络的连接组织对于理解大脑中神经网络的活动和功能以及信息处理至关重要。最近的研究表明,新皮层不仅组织在柱和层中,而且在这些柱和层内,还组织成突触连接的神经元簇(Ko 等人,2011 年;Perin 等人,2011 年)。最近发现的共同邻居规则表明,任何两个神经元之间形成突触连接的概率随着它们共同邻居数量的增加而增加,这是这种局部聚类的组织原则。在这里,我们研究了根据共同邻居规则构建的神经网络中,神经元轴突和树突分支的空间范围、神经元密度和网络大小如何确定簇大小和数量的理论限制。在我们开发的公式中,形态学范围、细胞密度和网络大小足以估计在给定网络中平均有多少个神经元存在于一个簇中,以及存在多少个簇。我们发现,随着网络参数的增加,簇的大小不会无限增长,而是趋于特征性的极限值。