Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
Mol Pharmacol. 2013 May;83(5):1007-19. doi: 10.1124/mol.112.084319. Epub 2013 Feb 26.
Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qi site inhibitor) preferentially activated TRPA1-expressing "nociceptor-like" mouse bronchopulmonary C-fibers. Action potential discharge was reduced by the TRPA1 antagonist HC-030031. Inhibition of TRPV1 further reduced C-fiber activation. In mouse dissociated vagal neurons, antimycin A induced Ca(2+) influx that was significantly reduced by pharmacological inhibition or genetic knockout of either TRPA1 or TRPV1. Inhibition of both TRPA1 and TRPV1 was required to abolish antimycin A-induced Ca(2+) influx in vagal neurons. Using an HEK293 cell expression system, antimycin A induced concentration-dependent activation of both hTRPA1 and hTRPV1 but failed to activate nontransfected cells. Myxothiazol (complex III Qo site inhibitor) inhibited antimycin A-induced TRPA1 activation, as did the reducing agent dithiothreitol. Scavenging of both superoxide and hydrogen peroxide inhibited TRPA1 activation following mitochondrial modulation. In conclusion, we present evidence that acute mitochondrial dysfunction activates airway sensory nerves preferentially via TRPA1 through the actions of mitochondrially-derived ROS. This represents a novel mechanism by which inflammation may be transduced into nociceptive electrical signaling.
线粒体功能障碍和随后的氧化应激已在炎症疾病的多种细胞类型中报道。鉴于感觉神经末梢周围末端线粒体的丰富性,以及瞬时受体电位(TRP)锚蛋白 1(A1)和 TRP 香草素 1(V1)对活性氧(ROS)及其脂质过氧化产物下游产物的敏感性,我们研究了神经末梢线粒体功能障碍对气道感觉神经兴奋性的影响。在这里,我们表明,用抗霉素 A(线粒体复合物 III Qi 位点抑制剂)急性处理引起的线粒体功能障碍优先激活表达 TRPA1 的“伤害感受器样”小鼠支气管肺 C 纤维。动作电位放电被 TRPA1 拮抗剂 HC-030031 减少。TRPV1 的抑制进一步减少了 C 纤维的激活。在小鼠分离的迷走神经元中,抗霉素 A 诱导 Ca(2+)内流,其被药理学抑制或基因敲除 TRPA1 或 TRPV1 显著减少。TRPA1 和 TRPV1 的抑制均需要消除迷走神经元中抗霉素 A 诱导的 Ca(2+)内流。使用 HEK293 细胞表达系统,抗霉素 A 诱导 hTRPA1 和 hTRPV1 的浓度依赖性激活,但不能激活未转染的细胞。米唑噻唑(复合物 III Qo 位点抑制剂)抑制抗霉素 A 诱导的 TRPA1 激活,还原剂二硫苏糖醇也是如此。超氧化物和过氧化氢的清除均抑制线粒体调节后 TRPA1 的激活。总之,我们提供的证据表明,急性线粒体功能障碍通过线粒体来源的 ROS 优先通过 TRPA1 激活气道感觉神经。这代表了一种新的机制,通过该机制,炎症可能被转导为伤害性电信号。