Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
BMC Genomics. 2013;14 Suppl 2(Suppl 2):S7. doi: 10.1186/1471-2164-14-S2-S7. Epub 2013 Feb 15.
Long intergenic non-coding RNAs (lincRNAs) are emerging as a novel class of non-coding RNAs and potent gene regulators. High-throughput RNA-sequencing combined with de novo assembly promises quantity discovery of novel transcripts. However, the identification of lincRNAs from thousands of assembled transcripts is still challenging due to the difficulties of separating them from protein coding transcripts (PCTs).
We have implemented iSeeRNA, a support vector machine (SVM)-based classifier for the identification of lincRNAs. iSeeRNA shows better performance compared to other software. A public available webserver for iSeeRNA is also provided for small size dataset.
iSeeRNA demonstrates high prediction accuracy and runs several magnitudes faster than other similar programs. It can be integrated into the transcriptome data analysis pipelines or run as a web server, thus offering a valuable tool for lincRNA study.
长链非编码 RNA(lincRNA)作为一类新的非编码 RNA 和有效的基因调控因子正在兴起。高通量 RNA 测序与从头组装相结合有望大量发现新的转录本。然而,由于从数以千计的组装转录本中分离 lincRNA 存在困难,因此仍然具有挑战性。
我们实现了 iSeeRNA,这是一种基于支持向量机(SVM)的 lincRNA 鉴定分类器。iSeeRNA 的性能优于其他软件。我们还提供了一个公共可用的 iSeeRNA 网络服务器,用于处理较小的数据集。
iSeeRNA 表现出较高的预测准确性,并且比其他类似程序快几个数量级。它可以集成到转录组数据分析管道中,或者作为网络服务器运行,因此为 lincRNA 研究提供了一个有价值的工具。