Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States.
Nano Lett. 2013 Apr 10;13(4):1687-92. doi: 10.1021/nl400196z. Epub 2013 Mar 6.
When plasmonic nanostructures serve as the metallic counterpart of a metal-semiconductor Schottky interface, hot electrons due to plasmon decay are emitted across the Schottky barrier, generating measurable photocurrents in the semiconductor. When the plasmonic nanostructure is atop the semiconductor, only a small percentage of hot electrons are excited with a wavevector permitting transport across the Schottky barrier. Here we show that embedding plasmonic structures into the semiconductor substantially increases hot electron emission. Responsivities increase by 25× over planar diodes for embedding depths as small as 5 nm. The vertical Schottky barriers created by this geometry make the plasmon-induced hot electron process the dominant contributor to photocurrent in plasmonic nanostructure-diode-based devices.
当等离子体纳米结构作为金属-半导体肖特基界面的金属对应物时,由于等离子体衰减而产生的热电子会穿过肖特基势垒发射,从而在半导体中产生可测量的光电流。当等离子体纳米结构位于半导体上方时,只有一小部分具有允许穿过肖特基势垒的波矢的热电子被激发。在这里,我们表明将等离子体结构嵌入半导体中会大大增加热电子发射。对于嵌入深度小至 5nm 的情况,响应率比平面二极管增加了 25 倍。这种几何形状产生的垂直肖特基势垒使得等离子体诱导的热电子过程成为基于等离子体纳米结构-二极管器件中光电流的主要贡献者。