School of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017 USA.
BMC Biol. 2013 Mar 1;11:20. doi: 10.1186/1741-7007-11-20.
Vertebrate predators use a broad arsenal of behaviors and weaponry for overcoming fractious and potentially dangerous prey. A unique array of predatory strategies occur among snakes, ranging from mechanical modes of constriction and jaw-holding in non-venomous snakes, to a chemical means, venom, for quickly dispatching prey. However, even among venomous snakes, different prey handling strategies are utilized, varying from the strike-and-hold behaviors exhibited by highly toxic elapid snakes to the rapid strike-and-release envenomation seen in viperid snakes. For vipers, this mode of envenomation represents a minimal risk predatory strategy by permitting little contact with or retaliation from prey, but it adds the additional task of relocating envenomated prey which has wandered from the attack site. This task is further confounded by trails of other unstruck conspecific or heterospecific prey. Despite decades of behavioral study, researchers still do not know the molecular mechanism which allows for prey relocation.
During behavioral discrimination trials (vomeronasal responsiveness) to euthanized mice injected with size-fractionated venom, Crotalus atrox responded significantly to only one protein peak. Assays for enzymes common in rattlesnake venoms, such as exonuclease, L-amino acid oxidase, metalloproteinase, thrombin-like and kallikrein-like serine proteases and phospholipase A(2), showed that vomeronasal responsiveness was not dependent on enzymatic activity. Using mass spectrometry and N-terminal sequencing, we identified the proteins responsible for envenomated prey discrimination as the non-enzymatic disintegrins crotatroxin 1 and 2. Our results demonstrate a novel and critical biological role for venom disintegrins far beyond their well-established role in disruption of cell-cell and cell-extracellular matrix interactions.
These findings reveal the evolutionary significance of free disintegrins in venoms as the molecular mechanism in vipers allowing for effective relocation of envenomated prey. The presence of free disintegrins in turn has led to evolution of a major behavioral adaptation (strike-and-release), characteristic of only rattlesnakes and other vipers, which exploits and refines the efficiency of a pre-existing chemical means of predation and a highly sensitive olfaction system. This system of a predator chemically tagging prey represents a novel trend in the coevolution of predator-prey relationships.
脊椎动物捕食者使用广泛的行为和武器来克服难缠且可能危险的猎物。蛇类中存在一系列独特的捕食策略,从无毒蛇类的机械性收缩和咬住猎物的方式,到快速杀死猎物的化学手段——毒液。然而,即使在毒蛇中,也会使用不同的猎物处理策略,从高度毒性的眼镜蛇类的“攻击并咬住”行为,到蝮蛇类的快速攻击并释放毒液。对于蝮蛇来说,这种毒液注射方式是一种风险最小的捕食策略,因为它与猎物的接触和反击很少,但它增加了重新定位已从攻击地点游走的中毒猎物的额外任务。这项任务因其他未受攻击的同种或异种猎物的痕迹而变得更加复杂。尽管经过了几十年的行为研究,研究人员仍然不知道允许猎物重新定位的分子机制。
在对注射了大小分级毒液的安乐死小鼠进行的行为辨别试验(鼻甲骨反应)中,响尾蛇 Crotalus atrox 仅对一个蛋白质峰有显著反应。对在响尾蛇毒液中常见的酶,如核酸外切酶、L-氨基酸氧化酶、金属蛋白酶、类凝血酶和类激肽释放酶以及磷脂酶 A(2)进行的测定表明,鼻甲骨反应并不依赖于酶活性。使用质谱和 N 端测序,我们确定了负责辨别中毒猎物的蛋白质是非酶解整合素 crotatroxin 1 和 2。我们的结果表明,毒液解整合素在远远超出其在细胞-细胞和细胞-细胞外基质相互作用破坏中的既定作用之外,具有新的和关键的生物学作用。
这些发现揭示了自由解整合素在毒液中的进化意义,它是响尾蛇能够有效重新定位中毒猎物的分子机制。自由解整合素的存在反过来又导致了一种主要行为适应(攻击并释放)的进化,这种行为适应仅存在于响尾蛇和其他蝮蛇中,它利用并完善了一种预先存在的化学捕食手段和高度敏感的嗅觉系统。这种捕食者对猎物进行化学标记的系统代表了捕食者-猎物关系共同进化中的一个新趋势。