Department of Chemistry, Fuzhou University, Fujian, China.
J Comput Aided Mol Des. 2013 Mar;27(3):247-56. doi: 10.1007/s10822-012-9630-6. Epub 2013 Mar 2.
New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.
新德里金属β-内酰胺酶 1(NDM-1)因其快速传播速度和使致病微生物对几乎所有已知β-内酰胺抗生素产生耐药性的能力,已成为对人类健康的主要全球性威胁。此外,迄今为止尚未发现有效的 NDM-1 抑制剂。尽管有大量的结构和动力学数据,但 NDM-1 水解β-内酰胺抗生素的酶促反应的准确分子特征和细节仍不完全清楚。在这项研究中,采用了包括分子对接、分子动力学模拟和量子力学/分子力学计算在内的组合计算方法,以表征 NDM-1 催化美罗培南的催化机制。量子力学/分子力学结果表明,离子化的 D124 有利于β-内酰胺环内 C-N 键的断裂。同时,如果没有水分子与 Zn2 配位,则形成中间体在能量上是有利的。此外,根据分子动力学结果,保守残基 K211 在底物结合和催化中起着关键作用,这与先前的诱变数据非常一致。我们的研究提供了对 NDM-1 水解美罗培南β-内酰胺抗生素的催化机制的详细了解,并为在临床研究中发现针对 NDM-1 阳性菌株的新抗生素提供了线索。