Suppr超能文献

基于高分辨率 CT 的快速小梁骨强度预测和个体化小梁分割的板和杆有限元模型可区分绝经后椎体骨折。

Fast trabecular bone strength predictions of HR-pQCT and individual trabeculae segmentation-based plate and rod finite element model discriminate postmenopausal vertebral fractures.

机构信息

Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.

出版信息

J Bone Miner Res. 2013 Jul;28(7):1666-78. doi: 10.1002/jbmr.1919.

Abstract

Although high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (µFE) prediction of yield strength using a HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using an individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high-resolution micro-computed tomography (HR-µCT) voxel model of 19 trabecular subvolumes from human cadaveric tibia samples. Both the Young's modulus and yield strength of HR-pQCT PR models strongly correlated with those of µCT voxel models (r²  = 0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and computer central processing unit (CPU) time (>1200-fold). Then, we applied PR model µFE analysis to HR-pQCT images of 60 postmenopausal women with (n = 30) and without (n = 30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young's modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for areal bone mineral density (aBMD) T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against µCT voxel models and demonstrated its ability to discriminate vertebral fracture status in postmenopausal women. This accurate nonlinear µFE prediction of the HR-pQCT PR model, which requires only seconds of desktop computer time, has tremendous promise for clinical assessment of bone strength.

摘要

虽然高分辨率外周定量计算机断层扫描(HR-pQCT)已经可以对小梁骨微结构进行临床评估,但由于其计算成本过高,使用 HR-pQCT 体素模型对屈服强度进行非线性微观结构有限元(µFE)预测在临床上是不切实际的。本研究的目的是开发一种高效的基于 HR-pQCT 的板和杆(PR)建模技术,以满足临床快速骨强度评估的未满足需求。通过使用个体小梁分割(ITS)技术将小梁结构分割成个体板和杆,通过对每个小梁板使用多个壳单元建模,并对每个杆使用梁单元建模,实现了患者特异性的 PR 模型。为了验证这种建模技术,将 HR-pQCT PR 模型的预测结果与来自人类尸体胫骨样本的 19 个小梁子体积的注册高分辨率微计算机断层扫描(HR-µCT)体素模型的预测结果进行了比较。HR-pQCT PR 模型的杨氏模量和屈服强度与 µCT 体素模型的杨氏模量和屈服强度高度相关(r²=0.91 和 0.86)。值得注意的是,HR-pQCT PR 模型的元素数量减少了>40 倍(>40 倍),计算机中央处理单元(CPU)时间减少了>1200 倍(>1200 倍)。然后,我们将 PR 模型的 µFE 分析应用于 60 名绝经后妇女的 HR-pQCT 图像,其中(n=30)有和(n=30)没有椎体骨折史。与对照组相比,骨折组的 HR-pQCT PR 模型在桡骨和胫骨处的杨氏模量和屈服强度显著降低。此外,在调整桡骨远端或全髋部的面积骨密度(aBMD)T 评分后,骨折组在这两个部位的这些力学测量值仍然显著较低。总之,我们验证了一种新的 HR-pQCT 人类小梁骨 PR 模型与 µCT 体素模型,并证明了它能够区分绝经后妇女的椎体骨折状态。这种准确的非线性 HR-pQCT PR 模型的 µFE 预测,仅需要几秒钟的台式计算机时间,为骨强度的临床评估带来了巨大的希望。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验