Department of Chemistry, University of North Carolina at Charlotte , 9201 University City Boulevard, Charlotte, North Carolina 28223-0001, United States.
Biochemistry. 2013 Mar 19;52(11):1939-49. doi: 10.1021/bi400126w. Epub 2013 Mar 8.
The sugar capsule capsular polysaccharide A (CPSA), which coats the surface of the mammalian symbiont Bacteroides fragilis, is a key mediator of mammalian immune system development. In addition, this sugar polymer has shown therapeutic potential in animal models of multiple sclerosis and other autoimmune disorders. The structure of the CPSA polymer includes a rare stereoconfiguration sugar acetamido-4-amino-6-deoxygalactopyranose (AADGal) that we propose is the first sugar linked to a bactoprenyl diphosphate scaffold in the production of CPSA. In this report, we have utilized a heterologous system to reconstitute bactoprenyl diphosphate-linked AADGal production. Construction of this system included a previously reported Campylobacter jejuni dehydratase, PglF, coupled to a B. fragilis-encoded aminotransferase (WcfR) and initiating hexose-1-phosphate transferase (WcfS). The function of the aminotransferase was confirmed by capillary electrophoresis and a novel high-performance liquid chromatography (HPLC) method. Production of the rare uridine diphosphate (UDP)-AADGal was confirmed through a series of one- and two-dimensional nuclear magnetic resonance experiments and high-resolution mass spectrometry. A spectroscopically unique analogue of bactoprenyl phosphate was utilized to characterize the transfer reaction catalyzed by WcfS and allowed HPLC-based isolation of the isoprenoid-linked sugar product. Importantly, the entire heterologous system was utilized in a single-pot reaction to biosynthesize the bactoprenyl-linked sugar. This work provides the first critical step in the in vitro reconstitution of CPSA biosynthesis.
糖胶囊荚膜多糖 A(CPSA)覆盖哺乳动物共生菌脆弱拟杆菌的表面,是哺乳动物免疫系统发育的关键介质。此外,这种糖聚合物在多发性硬化症和其他自身免疫性疾病的动物模型中显示出治疗潜力。CPSA 聚合物的结构包括一种罕见的立体构型糖乙酰氨基-4-氨基-6-去氧半乳糖吡喃糖(AADGal),我们提出这是第一个与细菌萜烯二磷酸支架连接的糖,用于 CPSA 的生产。在本报告中,我们利用异源系统重新构建了细菌萜烯二磷酸连接的 AADGal 生产。该系统的构建包括以前报道的空肠弯曲菌脱水酶 PglF,与脆弱拟杆菌编码的氨基转移酶(WcfR)和起始六糖-1-磷酸转移酶(WcfS)偶联。通过毛细管电泳和一种新颖的高效液相色谱(HPLC)方法证实了氨基转移酶的功能。通过一系列一维和二维核磁共振实验和高分辨率质谱证实了稀有尿苷二磷酸(UDP)-AADGal 的产生。利用光谱独特的细菌萜烯磷酸类似物来表征 WcfS 催化的转移反应,并允许基于 HPLC 的异戊烯基连接糖产物的分离。重要的是,整个异源系统在一锅反应中用于生物合成细菌萜烯连接的糖。这项工作提供了体外重建 CPSA 生物合成的第一个关键步骤。