Max-Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
Cell Mol Life Sci. 2013 May;70(9):1609-21. doi: 10.1007/s00018-013-1299-z. Epub 2013 Mar 6.
The DNA sequence largely defines gene expression and phenotype. However, it is becoming increasingly clear that an additional chromatin-based regulatory network imparts both stability and plasticity to genome output, modifying phenotype independently of the genetic blueprint. Indeed, alterations in this "epigenetic" control layer underlie, at least in part, the reason for monozygotic twins being discordant for disease. Functionally, this regulatory layer comprises post-translational modifications of DNA and histones, as well as small and large noncoding RNAs. Together these regulate gene expression by changing chromatin organization and DNA accessibility. Successive technological advances over the past decade have enabled researchers to map the chromatin state with increasing accuracy and comprehensiveness, catapulting genetic research into a genome-wide era. Here, aiming particularly at the genomics/epigenomics newcomer, we review the epigenetic basis that has helped drive the technological shift and how this progress is shaping our understanding of complex disease.
DNA 序列在很大程度上决定了基因表达和表型。然而,越来越明显的是,一个额外的基于染色质的调控网络赋予了基因组输出稳定性和可塑性,独立于遗传蓝图改变表型。事实上,这种“表观遗传”控制层的改变至少在一定程度上解释了同卵双胞胎在疾病方面存在差异的原因。从功能上讲,这个调控层包括 DNA 和组蛋白的翻译后修饰,以及小和大的非编码 RNA。这些共同通过改变染色质结构和 DNA 可及性来调节基因表达。在过去十年中,连续的技术进步使研究人员能够以越来越高的准确性和全面性绘制染色质状态图,将遗传研究推向了全基因组时代。在这里,我们特别针对基因组学/表观基因组学的新手,回顾了推动技术变革的表观遗传学基础,以及这一进展如何塑造我们对复杂疾病的理解。