Suppr超能文献

连接表观基因组学和复杂疾病:基础。

Bridging epigenomics and complex disease: the basics.

机构信息

Max-Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.

出版信息

Cell Mol Life Sci. 2013 May;70(9):1609-21. doi: 10.1007/s00018-013-1299-z. Epub 2013 Mar 6.

Abstract

The DNA sequence largely defines gene expression and phenotype. However, it is becoming increasingly clear that an additional chromatin-based regulatory network imparts both stability and plasticity to genome output, modifying phenotype independently of the genetic blueprint. Indeed, alterations in this "epigenetic" control layer underlie, at least in part, the reason for monozygotic twins being discordant for disease. Functionally, this regulatory layer comprises post-translational modifications of DNA and histones, as well as small and large noncoding RNAs. Together these regulate gene expression by changing chromatin organization and DNA accessibility. Successive technological advances over the past decade have enabled researchers to map the chromatin state with increasing accuracy and comprehensiveness, catapulting genetic research into a genome-wide era. Here, aiming particularly at the genomics/epigenomics newcomer, we review the epigenetic basis that has helped drive the technological shift and how this progress is shaping our understanding of complex disease.

摘要

DNA 序列在很大程度上决定了基因表达和表型。然而,越来越明显的是,一个额外的基于染色质的调控网络赋予了基因组输出稳定性和可塑性,独立于遗传蓝图改变表型。事实上,这种“表观遗传”控制层的改变至少在一定程度上解释了同卵双胞胎在疾病方面存在差异的原因。从功能上讲,这个调控层包括 DNA 和组蛋白的翻译后修饰,以及小和大的非编码 RNA。这些共同通过改变染色质结构和 DNA 可及性来调节基因表达。在过去十年中,连续的技术进步使研究人员能够以越来越高的准确性和全面性绘制染色质状态图,将遗传研究推向了全基因组时代。在这里,我们特别针对基因组学/表观基因组学的新手,回顾了推动技术变革的表观遗传学基础,以及这一进展如何塑造我们对复杂疾病的理解。

相似文献

1
Bridging epigenomics and complex disease: the basics.连接表观基因组学和复杂疾病:基础。
Cell Mol Life Sci. 2013 May;70(9):1609-21. doi: 10.1007/s00018-013-1299-z. Epub 2013 Mar 6.
2
Epigenomics in stress tolerance of plants under the climate change.植物在气候变化下的应激耐受中的表观基因组学。
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
5
Investigation of epigenetics in kidney cell biology.肾细胞生物学中的表观遗传学研究。
Methods Cell Biol. 2019;153:255-278. doi: 10.1016/bs.mcb.2019.04.015. Epub 2019 Jun 13.
6
Molecular signals of epigenetic states.表观遗传学状态的分子信号。
Science. 2010 Oct 29;330(6004):612-6. doi: 10.1126/science.1191078.
9
Decoding liver injury: A regulatory role for histone modifications.解读肝损伤:组蛋白修饰的调控作用
Int J Biochem Cell Biol. 2015 Oct;67:188-93. doi: 10.1016/j.biocel.2015.03.009. Epub 2015 Mar 20.

引用本文的文献

2
A CNN based m5c RNA methylation predictor.基于 CNN 的 m5c RNA 甲基化预测器。
Sci Rep. 2023 Dec 11;13(1):21885. doi: 10.1038/s41598-023-48751-9.
7
IMI - Myopia Genetics Report.近视遗传学报告
Invest Ophthalmol Vis Sci. 2019 Feb 28;60(3):M89-M105. doi: 10.1167/iovs.18-25965.

本文引用的文献

2
Landscape of transcription in human cells.人类细胞中的转录景观。
Nature. 2012 Sep 6;489(7414):101-8. doi: 10.1038/nature11233.
5
Programming of DNA methylation patterns.DNA 甲基化模式的编程。
Annu Rev Biochem. 2012;81:97-117. doi: 10.1146/annurev-biochem-052610-091920. Epub 2012 Feb 23.
6
Cancer epigenomics: beyond genomics.癌症表观基因组学:超越基因组学。
Curr Opin Genet Dev. 2012 Feb;22(1):50-5. doi: 10.1016/j.gde.2012.02.008. Epub 2012 Mar 6.
9
HITS-CLIP: panoramic views of protein-RNA regulation in living cells.HITS-CLIP:活细胞中蛋白质-RNA 调控的全景视图。
Wiley Interdiscip Rev RNA. 2010 Sep-Oct;1(2):266-86. doi: 10.1002/wrna.31. Epub 2010 Aug 2.
10
Molecular mechanisms of long noncoding RNAs.长非编码 RNA 的分子机制。
Mol Cell. 2011 Sep 16;43(6):904-14. doi: 10.1016/j.molcel.2011.08.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验