Suppr超能文献

血流介导溶栓过程中血栓碎裂的数学建模。

Mathematical modeling of blood clot fragmentation during flow-mediated thrombolysis.

机构信息

Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia.

出版信息

Biophys J. 2013 Mar 5;104(5):1181-90. doi: 10.1016/j.bpj.2013.01.029.

Abstract

A microscale mathematical model of blood clot dissolution based on coarse-grained molecular dynamics is presented. In the model, a blood clot is assumed to be an assembly of blood cells interconnected with elastic fibrin bonds, which are cleaved either biochemically (bond degradation) or mechanically (bond overstretching) during flow-mediated thrombolysis. The effect of a thrombolytic agent on biochemical bond degradation was modeled phenomenologically by assuming that the decay rate of an individual bond is a function of the remaining noncleaved bonds in the vicinity of that bond (spatial corrosion) and the relative stretching of the bond (deformational corrosion). The results of simulations indicate that the blood clot dissolution process progresses by a blood-flow-promoted removal of clot fragments, the sizes of which are flow-dependent. These findings are in good agreement with the results of our recent optical-microscopy experimental studies on a model of blood clot dissolution, as well as with clinical observations. The findings of this study may contribute to a better understanding of the clot fragmentation process and may therefore also help in designing new, safer thrombolytic approaches.

摘要

提出了一种基于粗粒分子动力学的血液凝块溶解的微观数学模型。在该模型中,血液凝块被假设为由相互连接的弹性纤维蛋白键的血细胞组装而成,这些键在流动介导的溶栓过程中通过生化(键降解)或机械(键过度拉伸)方式被切割。通过假设单个键的衰减速率是该键附近剩余未切割键的函数(空间腐蚀)和键的相对拉伸(变形腐蚀),对溶栓剂对生化键降解的影响进行了现象学建模。模拟结果表明,血液凝块溶解过程通过血流促进的凝块碎片的去除进行,其大小取决于血流。这些发现与我们最近在血液凝块溶解模型的光学显微镜实验研究以及临床观察结果非常吻合。这项研究的结果可能有助于更好地理解凝块碎裂过程,因此也有助于设计新的、更安全的溶栓方法。

相似文献

1
Mathematical modeling of blood clot fragmentation during flow-mediated thrombolysis.
Biophys J. 2013 Mar 5;104(5):1181-90. doi: 10.1016/j.bpj.2013.01.029.
2
A concept of thrombolysis as a corrosion-erosion process verified by optical microscopy.
Microcirculation. 2012 Oct;19(7):632-41. doi: 10.1111/j.1549-8719.2012.00198.x.
3
Analysis of blood clot degradation fragment sizes in relation to plasma flow velocity.
Gen Physiol Biophys. 2012 Sep;31(3):237-45. doi: 10.4149/gpb_2012_028.
6
Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow.
J R Soc Interface. 2015 Dec 6;12(113):20150949. doi: 10.1098/rsif.2015.0949.
7
Probing the Dynamics of Clot-Bound Thrombin at Venous Shear Rates.
Biophys J. 2017 Apr 25;112(8):1634-1644. doi: 10.1016/j.bpj.2017.03.002.
8
The hydraulic permeability of blood clots as a function of fibrin and platelet density.
Biophys J. 2013 Apr 16;104(8):1812-23. doi: 10.1016/j.bpj.2013.02.055.
9
Modelling the effect of laminar axially directed blood flow on the dissolution of non-occlusive blood clots.
Phys Med Biol. 2007 Jun 7;52(11):2969-85. doi: 10.1088/0031-9155/52/11/003. Epub 2007 May 2.
10
Blood clot simulation model by using the Bond-Graph technique.
ScientificWorldJournal. 2013 Dec 22;2013:519047. doi: 10.1155/2013/519047. eCollection 2013.

引用本文的文献

1
Effect of Ultrasound on Thrombus debris during Sonothrombolysis in a Microfluidic device.
J Thromb Thrombolysis. 2024 Aug;57(6):1056-1066. doi: 10.1007/s11239-024-03005-x. Epub 2024 Jun 2.
2
Decoding thrombosis through code: a review of computational models.
J Thromb Haemost. 2024 Jan;22(1):35-47. doi: 10.1016/j.jtha.2023.08.021. Epub 2023 Aug 30.
3
A simplified mesoscale 3D model for characterizing fibrinolysis under flow conditions.
Sci Rep. 2023 Aug 22;13(1):13681. doi: 10.1038/s41598-023-40973-1.
4
Effects of clot contraction on clot degradation: A mathematical and experimental approach.
Biophys J. 2022 Sep 6;121(17):3271-3285. doi: 10.1016/j.bpj.2022.07.023. Epub 2022 Aug 3.
5
The Utility and Potential of Mathematical Models in Predicting Fibrinolytic Outcomes.
Curr Opin Biomed Eng. 2021 Dec;20. doi: 10.1016/j.cobme.2021.100337. Epub 2021 Sep 11.
6
Study the effect of static magnetic field intensity on drug delivery by magnetic nanoparticles.
Sci Rep. 2021 Sep 10;11(1):18056. doi: 10.1038/s41598-021-97499-7.
7
On the Sensitivity Analysis of Porous Finite Element Models for Cerebral Perfusion Estimation.
Ann Biomed Eng. 2021 Dec;49(12):3647-3665. doi: 10.1007/s10439-021-02808-w. Epub 2021 Jun 21.
8
Three-phase Model of Visco-elastic Incompressible Fluid Flow and its Computational Implementation.
Commun Comput Phys. 2019;25(2):586-624. doi: 10.4208/cicp.oa-2017-0167. Epub 2018 Oct 1.
9
A porous circulation model of the human brain for clinical trials in ischaemic stroke.
Interface Focus. 2021 Feb 6;11(1):20190127. doi: 10.1098/rsfs.2019.0127. Epub 2020 Dec 11.
10
In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images.
Comput Biol Med. 2019 Mar;106:1-11. doi: 10.1016/j.compbiomed.2019.01.001. Epub 2019 Jan 11.

本文引用的文献

1
Energy conservation in molecular dynamics simulations of classical systems.
J Chem Phys. 2012 Jun 14;136(22):224106. doi: 10.1063/1.4726728.
2
A concept of thrombolysis as a corrosion-erosion process verified by optical microscopy.
Microcirculation. 2012 Oct;19(7):632-41. doi: 10.1111/j.1549-8719.2012.00198.x.
3
Impact of altered venous hemodynamic conditions on the formation of platelet layers in thromboemboli.
Thromb Res. 2012 Feb;129(2):158-63. doi: 10.1016/j.thromres.2011.09.007. Epub 2011 Oct 2.
4
Thrombolysis for deep venous thrombosis.
J Vasc Surg. 2012 Feb;55(2):607-11. doi: 10.1016/j.jvs.2011.06.005. Epub 2011 Jul 29.
5
Measuring single-cell density.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10992-6. doi: 10.1073/pnas.1104651108. Epub 2011 Jun 20.
6
Embolization during treatment of deep venous thrombosis: incidence, importance, and prevention.
Tech Vasc Interv Radiol. 2011 Jun;14(2):58-64. doi: 10.1053/j.tvir.2011.01.002.
7
Key role of hydrodynamic interactions in colloidal gelation.
Phys Rev Lett. 2010 Jun 18;104(24):245702. doi: 10.1103/PhysRevLett.104.245702. Epub 2010 Jun 15.
8
Acute pulmonary embolism. Part 2: treatment.
Nat Rev Cardiol. 2010 Nov;7(11):613-22. doi: 10.1038/nrcardio.2010.141. Epub 2010 Sep 14.
9
Microscopic clot fragment evidence of biochemo-mechanical degradation effects in thrombolysis.
Thromb Res. 2010 Aug;126(2):137-43. doi: 10.1016/j.thromres.2010.04.012. Epub 2010 May 23.
10
New universality class for the fragmentation of plastic materials.
Phys Rev Lett. 2010 Mar 5;104(9):095502. doi: 10.1103/PhysRevLett.104.095502. Epub 2010 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验