Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France.
Cell Rep. 2013 Mar 28;3(3):587-94. doi: 10.1016/j.celrep.2013.02.006. Epub 2013 Mar 7.
Systemic signals provided by nutrients and hormones are known to coordinate the growth and proliferation of different organs during development. However, within the brain, it is unclear how these signals influence neural progenitor divisions and neuronal diversity. Here, in the Drosophila visual system, we identify two developmental phases with different sensitivities to dietary nutrients. During early larval stages, nutrients regulate the size of the neural progenitor pool via insulin/PI3K/TOR-dependent symmetric neuroepithelial divisions. During late larval stages, neural proliferation becomes insensitive to dietary nutrients, and the steroid hormone ecdysone acts on Delta/Notch signaling to promote the switch from symmetric mitoses to asymmetric neurogenic divisions. This mechanism accounts for why sustained undernourishment during visual system development restricts neuronal numbers while protecting neuronal diversity. These studies reveal an adaptive mechanism that helps to retain a functional visual system over a range of different brain sizes in the face of suboptimal nutrition.
营养物质和激素提供的系统信号已知可在发育过程中协调不同器官的生长和增殖。然而,在大脑中,这些信号如何影响神经祖细胞的分裂和神经元的多样性尚不清楚。在这里,在果蝇的视觉系统中,我们确定了两个对膳食营养物质具有不同敏感性的发育阶段。在早期幼虫阶段,营养物质通过胰岛素/PI3K/TOR 依赖性对称神经上皮分裂来调节神经祖细胞池的大小。在晚期幼虫阶段,神经增殖对膳食营养物质不再敏感,类固醇激素蜕皮激素作用于 Delta/Notch 信号通路,促进从对称有丝分裂到不对称神经发生分裂的转变。这种机制解释了为什么在视觉系统发育过程中持续的营养不足会限制神经元数量,同时保护神经元的多样性。这些研究揭示了一种适应机制,有助于在面对营养不足的情况下,在不同的大脑大小范围内保留一个功能性的视觉系统。