Aix-Marseille Univ, IBDML, Marseille, France.
Curr Top Dev Biol. 2012;98:199-228. doi: 10.1016/B978-0-12-386499-4.00008-2.
The mechanisms underlying the temporal specification of neural stem cells (NSCs), a process by which a single progenitor can generate different types of neurons and glia in an invariant order, are still poorly understood in mammals. However, in the past decade, work on Drosophila NSCs, called neuroblasts, has identified a series of sequentially expressed transcription factors that lies at the heart of this phenomenon. Here, I highlight some key findings that illuminate the role of these transcription factors during development and the regulatory principles allowing them not only to promote neuronal diversity but also to control the final number of neurons in the different regions of the nervous system. Ultimately, and given recent evidences of evolutionary conservation, cracking the temporal specification code of Drosophila neuroblasts may provide new perspectives for the safe manipulation of human NSCs and their therapeutic use.
神经干细胞(NSCs)的时间特异性形成机制在哺乳动物中仍知之甚少,这一过程中单个祖细胞能够以不变的顺序产生不同类型的神经元和神经胶质细胞。然而,在过去的十年中,对果蝇 NSCs(称为神经母细胞)的研究已经确定了一系列顺序表达的转录因子,这些转录因子是这一现象的核心。在这里,我将重点介绍一些关键发现,这些发现阐明了这些转录因子在发育过程中的作用,以及允许它们不仅促进神经元多样性,而且控制神经系统不同区域最终神经元数量的调控原则。最终,鉴于最近的进化保守性证据,破解果蝇神经母细胞的时间特异性形成密码可能为安全操作人类 NSCs 及其治疗用途提供新的视角。