Consiglio Nazionale delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM) DEMOCRITOS Simulation Center and Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34146 Trieste, Italy.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4917-22. doi: 10.1073/pnas.1213486110. Epub 2013 Mar 11.
Solar-to-fuel energy conversion relies on the invention of efficient catalysts enabling water oxidation through low-energy pathways. Our aerobic life is based on this strategy, mastered by the natural Photosystem II enzyme, using a tetranuclear Mn-oxo complex as oxygen evolving center. Within artificial devices, water can be oxidized efficiently on tailored metal-oxide surfaces such as RuO2. The quest for catalyst optimization in vitro is plagued by the elusive description of the active sites on bulk oxides. Although molecular mimics of the natural catalyst have been proposed, they generally suffer from oxidative degradation under multiturnover regime. Here we investigate a nano-sized Ru4-polyoxometalate standing as an efficient artificial catalyst featuring a totally inorganic molecular structure with enhanced stability. Experimental and computational evidence reported herein indicates that this is a unique molecular species mimicking oxygenic RuO2 surfaces. Ru4-polyoxometalate bridges the gap between homogeneous and heterogeneous water oxidation catalysis, leading to a breakthrough system. Density functional theory calculations show that the catalytic efficiency stems from the optimal distribution of the free energy cost to form reaction intermediates, in analogy with metal-oxide catalysts, thus providing a unifying picture for the two realms of water oxidation catalysis. These correlations among the mechanism of reaction, thermodynamic efficiency, and local structure of the active sites provide the key guidelines for the rational design of superior molecular catalysts and composite materials designed with a bottom-up approach and atomic control.
太阳能到燃料的能量转换依赖于高效催化剂的发明,这些催化剂能够通过低能量途径实现水的氧化。我们的有氧生命依赖于这种策略,由天然的 Photosystem II 酶来实现,利用四核 Mn-氧合复合物作为产氧中心。在人工设备中,可以在经过修饰的金属氧化物表面(如 RuO2)上有效地氧化水。在体外进行催化剂优化的研究中,由于难以描述体相氧化物上的活性位,因此受到了困扰。尽管已经提出了天然催化剂的分子模拟物,但它们通常在多周转条件下会遭受氧化降解。在这里,我们研究了一种纳米级的 Ru4-多金属氧酸盐,它作为一种具有增强稳定性的全无机分子结构的高效人工催化剂。本文报道的实验和计算证据表明,这是一种独特的分子物种,模拟了放氧型 RuO2 表面。Ru4-多金属氧酸盐桥接了均相和多相水氧化催化之间的差距,从而带来了突破性的系统。密度泛函理论计算表明,催化效率源于形成反应中间体的自由能成本的最佳分布,与金属氧化物催化剂类似,从而为水氧化催化的两个领域提供了统一的图景。这些反应机制、热力学效率和活性位局部结构之间的相关性为基于自下而上方法和原子控制的优越分子催化剂和复合材料的合理设计提供了关键的指导原则。