Suppr超能文献

一种全无机四钌氧分子配合物复制的水氧化表面机理。

Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium-oxo molecular complex.

机构信息

Consiglio Nazionale delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM) DEMOCRITOS Simulation Center and Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34146 Trieste, Italy.

出版信息

Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4917-22. doi: 10.1073/pnas.1213486110. Epub 2013 Mar 11.

Abstract

Solar-to-fuel energy conversion relies on the invention of efficient catalysts enabling water oxidation through low-energy pathways. Our aerobic life is based on this strategy, mastered by the natural Photosystem II enzyme, using a tetranuclear Mn-oxo complex as oxygen evolving center. Within artificial devices, water can be oxidized efficiently on tailored metal-oxide surfaces such as RuO2. The quest for catalyst optimization in vitro is plagued by the elusive description of the active sites on bulk oxides. Although molecular mimics of the natural catalyst have been proposed, they generally suffer from oxidative degradation under multiturnover regime. Here we investigate a nano-sized Ru4-polyoxometalate standing as an efficient artificial catalyst featuring a totally inorganic molecular structure with enhanced stability. Experimental and computational evidence reported herein indicates that this is a unique molecular species mimicking oxygenic RuO2 surfaces. Ru4-polyoxometalate bridges the gap between homogeneous and heterogeneous water oxidation catalysis, leading to a breakthrough system. Density functional theory calculations show that the catalytic efficiency stems from the optimal distribution of the free energy cost to form reaction intermediates, in analogy with metal-oxide catalysts, thus providing a unifying picture for the two realms of water oxidation catalysis. These correlations among the mechanism of reaction, thermodynamic efficiency, and local structure of the active sites provide the key guidelines for the rational design of superior molecular catalysts and composite materials designed with a bottom-up approach and atomic control.

摘要

太阳能到燃料的能量转换依赖于高效催化剂的发明,这些催化剂能够通过低能量途径实现水的氧化。我们的有氧生命依赖于这种策略,由天然的 Photosystem II 酶来实现,利用四核 Mn-氧合复合物作为产氧中心。在人工设备中,可以在经过修饰的金属氧化物表面(如 RuO2)上有效地氧化水。在体外进行催化剂优化的研究中,由于难以描述体相氧化物上的活性位,因此受到了困扰。尽管已经提出了天然催化剂的分子模拟物,但它们通常在多周转条件下会遭受氧化降解。在这里,我们研究了一种纳米级的 Ru4-多金属氧酸盐,它作为一种具有增强稳定性的全无机分子结构的高效人工催化剂。本文报道的实验和计算证据表明,这是一种独特的分子物种,模拟了放氧型 RuO2 表面。Ru4-多金属氧酸盐桥接了均相和多相水氧化催化之间的差距,从而带来了突破性的系统。密度泛函理论计算表明,催化效率源于形成反应中间体的自由能成本的最佳分布,与金属氧化物催化剂类似,从而为水氧化催化的两个领域提供了统一的图景。这些反应机制、热力学效率和活性位局部结构之间的相关性为基于自下而上方法和原子控制的优越分子催化剂和复合材料的合理设计提供了关键的指导原则。

相似文献

1
Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium-oxo molecular complex.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4917-22. doi: 10.1073/pnas.1213486110. Epub 2013 Mar 11.
2
Photosynthetic water oxidation: insights from manganese model chemistry.
Acc Chem Res. 2015 Mar 17;48(3):567-74. doi: 10.1021/ar5004175. Epub 2015 Mar 2.
3
4
From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II.
Photosynth Res. 2022 May;152(2):107-133. doi: 10.1007/s11120-022-00912-z. Epub 2022 Apr 9.
5
Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
Acc Chem Res. 2015 Jul 21;48(7):2084-96. doi: 10.1021/acs.accounts.5b00149. Epub 2015 Jul 1.
6
Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
Acc Chem Res. 2022 Mar 15;55(6):878-892. doi: 10.1021/acs.accounts.1c00753. Epub 2022 Feb 22.
7
Biomimetic Water-Oxidation Catalysts: Manganese Oxides.
Top Curr Chem. 2016;371:49-72. doi: 10.1007/128_2015_634.
8
A first principles study of water oxidation catalyzed by a tetraruthenium-oxo core embedded in polyoxometalate ligands.
Phys Chem Chem Phys. 2011 May 7;13(17):7666-74. doi: 10.1039/c0cp01915a. Epub 2011 Feb 22.
9
Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates.
Annu Rev Phys Chem. 2017 May 5;68:209-231. doi: 10.1146/annurev-physchem-052516-050655. Epub 2017 Feb 22.
10
Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis.
Acc Chem Res. 2009 Dec 21;42(12):1935-43. doi: 10.1021/ar900249x.

引用本文的文献

1
Continuous Light-Induced Water Oxidation in Polyoxometalate-Based Photocatalytic Protocells and Prototissues.
Chemistry. 2025 Jul 11;31(39):e202501322. doi: 10.1002/chem.202501322. Epub 2025 Jun 22.
2
Quaternary Mixed Oxides of Non-Noble Metals with Enhanced Stability during the Oxygen Evolution Reaction.
ACS Appl Mater Interfaces. 2024 Dec 25;16(51):70429-70441. doi: 10.1021/acsami.4c10234. Epub 2024 Oct 13.
3
A breath of sunshine: oxygenic photosynthesis by functional molecular architectures.
Chem Sci. 2023 Oct 4;14(44):12402-12429. doi: 10.1039/d3sc03780k. eCollection 2023 Nov 15.
4
Enhancing Oxygenic Photosynthesis by Cross-Linked Perylenebisimide "Quantasomes".
J Am Chem Soc. 2022 Aug 10;144(31):14021-14025. doi: 10.1021/jacs.2c05857. Epub 2022 Jul 26.
6
Flexibility Enhances Reactivity: Redox Isomerism and Jahn-Teller Effects in a Bioinspired MnO Cubane Water Oxidation Catalyst.
ACS Catal. 2021 Nov 5;11(21):13320-13329. doi: 10.1021/acscatal.1c03566. Epub 2021 Oct 18.
7
Activation by oxidation and ligand exchange in a molecular manganese vanadium oxide water oxidation catalyst.
Chem Sci. 2021 Aug 30;12(39):12918-12927. doi: 10.1039/d1sc03239a. eCollection 2021 Oct 13.
8
Understanding polyoxometalates as water oxidation catalysts through iron cobalt reactivity.
Chem Sci. 2021 May 19;12(25):8755-8766. doi: 10.1039/d1sc01016f. eCollection 2021 Jul 1.
9
Two-Channel Model for Electron Transfer in a Dye-Catalyst-Dye Supramolecular Complex for Photocatalytic Water Splitting.
ChemSusChem. 2021 Aug 9;14(15):3155-3162. doi: 10.1002/cssc.202100846. Epub 2021 Jun 25.

本文引用的文献

1
Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode.
J Phys Chem B. 2004 Nov 18;108(46):17886-17892. doi: 10.1021/jp047349j.
2
Catalytic mechanism of water oxidation with single-site ruthenium-heteropolytungstate complexes.
J Am Chem Soc. 2011 Aug 3;133(30):11605-13. doi: 10.1021/ja2024965. Epub 2011 Jul 7.
3
Towards the computational design of solid catalysts.
Nat Chem. 2009 Apr;1(1):37-46. doi: 10.1038/nchem.121.
4
Powering the planet with solar fuel.
Nat Chem. 2009 Apr;1(1):7. doi: 10.1038/nchem.141.
5
A first principles study of water oxidation catalyzed by a tetraruthenium-oxo core embedded in polyoxometalate ligands.
Phys Chem Chem Phys. 2011 May 7;13(17):7666-74. doi: 10.1039/c0cp01915a. Epub 2011 Feb 22.
6
Addition of N-heterocyclic carbenes to a ruthenium(VI) nitrido polyoxometalate: a new route to cyclic guanidines.
Inorg Chem. 2011 Mar 21;50(6):2501-6. doi: 10.1021/ic102307w. Epub 2011 Feb 14.
7
Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110).
J Am Chem Soc. 2010 Dec 29;132(51):18214-22. doi: 10.1021/ja1069272. Epub 2010 Dec 6.
8
Nonaqueous catalytic water oxidation.
J Am Chem Soc. 2010 Dec 22;132(50):17670-3. doi: 10.1021/ja107347n. Epub 2010 Nov 23.
9
Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces.
Nat Chem. 2010 Oct;2(10):826-31. doi: 10.1038/nchem.761. Epub 2010 Aug 8.
10
Ruthenium polyoxometalate water splitting catalyst: very fast hole scavenging from photogenerated oxidants.
Chem Commun (Camb). 2010 May 14;46(18):3152-4. doi: 10.1039/b926823e. Epub 2010 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验