Stevens Kim B, Gilbert Marius, Pfeiffer Dirk U
Department of Veterinary Clinical Sciences, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, UK.
Spat Spatiotemporal Epidemiol. 2013 Mar;4:1-14. doi: 10.1016/j.sste.2012.11.002. Epub 2012 Nov 24.
Risk maps are one of several sources used to inform risk-based disease surveillance and control systems, but their production can be hampered by lack of access to suitable disease data. In such situations, knowledge-driven spatial modeling methods are an alternative to data-driven approaches. This study used multicriteria decision analysis (MCDA) to identify areas in Asia suitable for the occurrence of highly pathogenic avian influenza virus (HPAIV) H5N1 in domestic poultry. Areas most suitable for H5N1 occurrence included Bangladesh, the southern tip and eastern coast of Vietnam, parts of north-central Thailand and large parts of eastern China. The predictive accuracy of the final model, as determined by the area under the receiver operating characteristic curve (ROC AUC), was 0.670 (95% CI 0.667-0.673) suggesting that, in data-scarce environments, MCDA provides a reasonable alternative to the data-driven approaches usually used to inform risk-based disease surveillance and control strategies.
风险地图是用于为基于风险的疾病监测和控制系统提供信息的几种来源之一,但其制作可能因无法获取合适的疾病数据而受到阻碍。在这种情况下,知识驱动的空间建模方法是数据驱动方法的一种替代方案。本研究使用多标准决策分析(MCDA)来确定亚洲适合高致病性禽流感病毒(HPAIV)H5N1在家禽中发生的区域。最适合H5N1发生的区域包括孟加拉国、越南南端和东海岸、泰国中北部部分地区以及中国东部大部分地区。由受试者工作特征曲线下面积(ROC AUC)确定的最终模型的预测准确性为0.670(95%CI 0.667-0.673),这表明,在数据稀缺的环境中,MCDA为通常用于为基于风险的疾病监测和控制策略提供信息的数据驱动方法提供了一种合理的替代方案。