Suppr超能文献

亚洲家禽中高致病性禽流感病毒H5N1发生的栖息地适宜性建模:一种空间多标准决策分析方法。

Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach.

作者信息

Stevens Kim B, Gilbert Marius, Pfeiffer Dirk U

机构信息

Department of Veterinary Clinical Sciences, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, UK.

出版信息

Spat Spatiotemporal Epidemiol. 2013 Mar;4:1-14. doi: 10.1016/j.sste.2012.11.002. Epub 2012 Nov 24.

Abstract

Risk maps are one of several sources used to inform risk-based disease surveillance and control systems, but their production can be hampered by lack of access to suitable disease data. In such situations, knowledge-driven spatial modeling methods are an alternative to data-driven approaches. This study used multicriteria decision analysis (MCDA) to identify areas in Asia suitable for the occurrence of highly pathogenic avian influenza virus (HPAIV) H5N1 in domestic poultry. Areas most suitable for H5N1 occurrence included Bangladesh, the southern tip and eastern coast of Vietnam, parts of north-central Thailand and large parts of eastern China. The predictive accuracy of the final model, as determined by the area under the receiver operating characteristic curve (ROC AUC), was 0.670 (95% CI 0.667-0.673) suggesting that, in data-scarce environments, MCDA provides a reasonable alternative to the data-driven approaches usually used to inform risk-based disease surveillance and control strategies.

摘要

风险地图是用于为基于风险的疾病监测和控制系统提供信息的几种来源之一,但其制作可能因无法获取合适的疾病数据而受到阻碍。在这种情况下,知识驱动的空间建模方法是数据驱动方法的一种替代方案。本研究使用多标准决策分析(MCDA)来确定亚洲适合高致病性禽流感病毒(HPAIV)H5N1在家禽中发生的区域。最适合H5N1发生的区域包括孟加拉国、越南南端和东海岸、泰国中北部部分地区以及中国东部大部分地区。由受试者工作特征曲线下面积(ROC AUC)确定的最终模型的预测准确性为0.670(95%CI 0.667-0.673),这表明,在数据稀缺的环境中,MCDA为通常用于为基于风险的疾病监测和控制策略提供信息的数据驱动方法提供了一种合理的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验