Suppr超能文献

A probabilistic contrast model of causal induction.

作者信息

Cheng P W, Novick L R

机构信息

Department of Psychology, University of California, Los Angeles 90024-1563.

出版信息

J Pers Soc Psychol. 1990 Apr;58(4):545-67. doi: 10.1037//0022-3514.58.4.545.

Abstract

Deviations from the predictions of covariational models of causal attribution have often been reported in the literature. These include a bias against using consensus information, a bias toward attributing effects to a person, and a tendency to make a variety of unpredicted conjunctive attributions. It is contended that these deviations, rather than representing irrational biases, could be due to (a) unspecified information over which causal inferences are computed and (b) the questionable normativeness of the models against which these deviations have been measured. A probabilistic extension of Kelley's analysis-of-variance analogy is proposed. An experiment was performed to assess the above biases and evaluate the proposed model against competing ones. The results indicate that the inference process is unbiased.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验