Suppr超能文献

层 5 锥体神经元尖峰活动由远侧顶树突中的振荡抑制控制:计算建模研究。

Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study.

机构信息

College of Automation, Chongqing University, Chongqing, China.

出版信息

J Neurophysiol. 2013 Jun;109(11):2739-56. doi: 10.1152/jn.00397.2012. Epub 2013 Mar 13.

Abstract

The distal apical dendrites of layer 5 pyramidal neurons receive cortico-cortical and thalamocortical top-down and feedback inputs, as well as local recurrent inputs. A prominent source of recurrent inhibition in the neocortical circuit is somatostatin-positive Martinotti cells, which preferentially target distal apical dendrites of pyramidal cells. These electrically coupled cells can fire synchronously at various frequencies, including over a relatively slow range (5∼30 Hz), thereby imposing oscillatory inhibition on the pyramidal apical tuft dendrites. We examined how such distal oscillatory inhibition influences the firing of a biophysically detailed layer 5 pyramidal neuron model, which reproduced the spatiotemporal properties of sodium, calcium, and N-methyl-D-aspartate receptor spikes found experimentally. We found that oscillatory synchronization strongly influences the impact of distal inhibition on the pyramidal cell firing. Whereas asynchronous inhibition largely cancels out the facilitatory effects of distal excitatory inputs, inhibition oscillating synchronously at around 10∼20 Hz allows distal excitation to drive axosomatic firing, as if distal inhibition were absent. Underlying this is a switch from relatively infrequent burst firing to single spike firing at every period of the inhibitory oscillation. This phenomenon depends on hyperpolarization-activated cation current-dependent membrane potential resonance in the dendrite, but also, in a novel manner, on a cooperative amplification of this resonance by N-methyl-D-aspartate-receptor-driven dendritic action potentials. Our results point to a surprising dependence of the effect of recurrent inhibition by Martinotti cells on their oscillatory synchronization, which may control not only the local circuit activity, but also how it is transmitted to and decoded by downstream circuits.

摘要

5 层锥体神经元的远端顶树突接收皮质-皮质和丘脑皮质自上而下和反馈输入,以及局部回传输入。新皮层回路中一种突出的回传抑制源是生长抑素阳性的 Martinotti 细胞,它优先靶向锥体细胞的远端顶树突。这些电耦合细胞可以在各种频率下同步放电,包括相对较慢的范围(5∼30 Hz),从而对锥体顶树突施加振荡抑制。我们研究了这种远端振荡抑制如何影响生物物理细节层 5 锥体神经元模型的放电,该模型再现了实验中发现的钠、钙和 N-甲基-D-天冬氨酸受体尖峰的时空特性。我们发现,振荡同步强烈影响远端抑制对锥体细胞放电的影响。虽然异步抑制在很大程度上抵消了远端兴奋性输入的促进作用,但以大约 10∼20 Hz 的同步频率振荡的抑制允许远端兴奋驱动轴突体放电,就好像远端抑制不存在一样。这是由于从相对不频繁的爆发放电到抑制振荡的每个周期的单个尖峰放电的转变。这种现象依赖于树突中 hyperpolarization-activated cation 电流依赖性膜电位共振,但也以一种新颖的方式依赖于 N-甲基-D-天冬氨酸受体驱动的树突动作电位对这种共振的协同放大。我们的结果表明,Martinotti 细胞的回传抑制作用对其振荡同步的依赖性令人惊讶,这可能不仅控制局部回路活动,还控制其如何传递到下游回路并被其解码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验