Suppr超能文献

突触整合对脉冲神经网络动力学和计算性能的影响。

Effects of synaptic integration on the dynamics and computational performance of spiking neural network.

作者信息

Li Xiumin, Luo Shengyuan, Xue Fangzheng

机构信息

College of Automation, Chongqing University, Chongqing, 400044 China.

出版信息

Cogn Neurodyn. 2020 Jun;14(3):347-357. doi: 10.1007/s11571-020-09572-y. Epub 2020 Feb 19.

Abstract

Neurons in the brain receive thousands of synaptic inputs from other neurons. This afferent information is processed by neurons through synaptic integration, which is an important information processing mechanism in biological neural networks. Synaptic currents integrated from spiking trains of presynaptic neurons have complex nonlinear dynamics which endow neurons with significant computational abilities. However, in many computational studies of neural networks, external input currents are often simply taken as a direct current that is static. In this paper, the influences of synaptic and noise external currents on the dynamics of spiking neural network and its computational capability have been investigated in detail. Our results show that due to the nonlinear synaptic integration, both of fast and slow excitatory synaptic currents have much more complex and oscillatory fluctuations than the noise current with the same average intensity. Thus network driven by synaptic external current exhibits remarkably more complex dynamics than that driven by noise external current. Interestingly, the enhancement of network activity is beneficial for information transmission, which is further supported by two computational tasks conducted on the liquid state machine (LSM) network. LSM with synaptic external current displays considerably better performance in both nonlinear fitting and pattern classification than that with noise external current. Synaptic integration can significantly enhance the entropy of activity patterns and computational performance of LSM. Our results demonstrate that the complex dynamics of nonlinear synaptic integration play a critical role in the computational abilities of neural networks and should be more broadly considered in the modelling studies of spiking neural networks.

摘要

大脑中的神经元会接收来自其他神经元的数千个突触输入。神经元通过突触整合来处理这些传入信息,突触整合是生物神经网络中一种重要的信息处理机制。从突触前神经元的脉冲序列整合而来的突触电流具有复杂的非线性动力学,这赋予了神经元显著的计算能力。然而,在许多神经网络的计算研究中,外部输入电流通常被简单地视为静态的直流电流。在本文中,我们详细研究了突触和噪声外部电流对脉冲神经网络动力学及其计算能力的影响。我们的结果表明,由于非线性突触整合,快速和慢速兴奋性突触电流都比具有相同平均强度的噪声电流具有更复杂和振荡性的波动。因此,由突触外部电流驱动的网络表现出比由噪声外部电流驱动的网络明显更复杂的动力学。有趣的是,网络活动的增强有利于信息传输,这在基于液态机器(LSM)网络进行的两项计算任务中得到了进一步支持。具有突触外部电流的LSM在非线性拟合和模式分类方面都比具有噪声外部电流的LSM表现出更好的性能。突触整合可以显著提高活动模式的熵和LSM的计算性能。我们的结果表明,非线性突触整合的复杂动力学在神经网络的计算能力中起着关键作用,在脉冲神经网络的建模研究中应更广泛地加以考虑。

相似文献

3
Synaptic dynamics: linear model and adaptation algorithm.突触动力学:线性模型与自适应算法。
Neural Netw. 2014 Aug;56:49-68. doi: 10.1016/j.neunet.2014.04.001. Epub 2014 Apr 28.
4
Shaping Intrinsic Neural Oscillations with Periodic Stimulation.通过周期性刺激塑造内在神经振荡
J Neurosci. 2016 May 11;36(19):5328-37. doi: 10.1523/JNEUROSCI.0236-16.2016.
10
Effects of synaptic connectivity on liquid state machine performance.突触连接对液体状态机性能的影响。
Neural Netw. 2013 Feb;38:39-51. doi: 10.1016/j.neunet.2012.11.003. Epub 2012 Nov 17.

引用本文的文献

6
Synaptic dendritic activity modulates the single synaptic event.突触树突活动调节单个突触事件。
Cogn Neurodyn. 2021 Apr;15(2):279-297. doi: 10.1007/s11571-020-09607-4. Epub 2020 Jul 1.

本文引用的文献

1
Chimera states in neuronal networks: A review.神经元网络中的嵌合体状态:综述。
Phys Life Rev. 2019 Mar;28:100-121. doi: 10.1016/j.plrev.2018.09.003. Epub 2018 Sep 12.
2
Network science of biological systems at different scales: A review.生物系统不同尺度的网络科学:综述。
Phys Life Rev. 2018 Mar;24:118-135. doi: 10.1016/j.plrev.2017.11.003. Epub 2017 Nov 3.
7
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines.随机突触助力高效受脑启发的学习机器。
Front Neurosci. 2016 Jun 29;10:241. doi: 10.3389/fnins.2016.00241. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验