Suppr超能文献

基于量子点纳米金属表面能量转移的生物样品中唾液酸组成和连接方式的生物传感分析。

Quantum dot nanometal surface energy transfer based biosensing of sialic acid compositions and linkages in biological samples.

机构信息

Glycobiology Research and Training Center, Department of Medicine, University of California, San Diego, La Jolla, California, United States.

出版信息

Anal Chem. 2013 Apr 16;85(8):3864-70. doi: 10.1021/ac400320n. Epub 2013 Apr 2.

Abstract

Current methods for analyzing sialic acid diversity in modifications and linkages require multistep processing, derivatization, and chromatographic analyses. We here report a single-step optical method for identification and quantification of different compositions of sialoglycans on glycoproteins and in serum. This was achieved by measuring and quantifying nanometal surface energy transfer (NSET) signals between quantum dots and gold nanoparticles bound to specific sialic acid binding proteins (SBPs) and sialic acid moieties, respectively. The biosensing process is based on the NSET turn-on by external sialic acid species that compete for binding to the SBPs. Selectivity of the biosensor toward sialoglycans can be designed to detect the total amount, glycosylation linkages (α2-6 vs α2-3), and modifications (9-O-acetyl and N-glycolyl groups) in the samples. This nanobiosensor is a prototype expected to achieve limits of the detection down to the micromolar range for high-throughput quantification and analysis of different compositions of sialoglycans present in biological or biomedical samples.

摘要

目前分析修饰和连接物中唾液酸多样性的方法需要多步处理、衍生化和色谱分析。我们在这里报告了一种用于鉴定和定量糖蛋白和血清中不同唾液酸聚糖组成的单步光学方法。这是通过测量和定量量子点和金纳米粒子之间的纳米金属表面能量转移(NSET)信号来实现的,分别与特定的唾液酸结合蛋白(SBPs)和唾液酸部分结合。生物传感过程基于外部唾液酸物种通过与 SBPs 竞争结合而引发的 NSET 开启。生物传感器对唾液酸聚糖的选择性可以设计为检测样品中的总量、糖基化连接(α2-6 与 α2-3)和修饰(9-O-乙酰基和 N-糖基化基团)。这种纳米生物传感器是一种原型,有望实现低至微摩尔范围的检测极限,用于高通量定量和分析生物或生物医学样品中存在的不同唾液酸聚糖组成。

相似文献

2
A Dual-Readout Method for Biothiols Detection Based on the NSET of Nitrogen-Doped Carbon Quantum Dots-Au Nanoparticles System.
J Fluoresc. 2017 Sep;27(5):1597-1605. doi: 10.1007/s10895-017-2095-1. Epub 2017 Apr 11.
4
Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS.
Anal Chem. 2008 Jul 1;80(13):5211-8. doi: 10.1021/ac800457a. Epub 2008 May 17.
5
On-chip detection of protein glycosylation based on energy transfer between nanoparticles.
Biosens Bioelectron. 2009 Jan 1;24(5):1189-94. doi: 10.1016/j.bios.2008.07.012. Epub 2008 Jul 18.
6
Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles.
Talanta. 2013 Apr 15;108:11-8. doi: 10.1016/j.talanta.2013.02.052. Epub 2013 Mar 1.

引用本文的文献

2
Glyco-nanotechnology: A biomedical perspective.
Nanomedicine. 2022 Jun;42:102542. doi: 10.1016/j.nano.2022.102542. Epub 2022 Feb 19.
3
In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines.
Nanomaterials (Basel). 2020 Oct 31;10(11):2177. doi: 10.3390/nano10112177.
4
Sialic Acid-Targeted Biointerface Materials and Bio-Applications.
Polymers (Basel). 2017 Jun 27;9(7):249. doi: 10.3390/polym9070249.
5
Multivalent Sialosides: A Tool to Explore the Role of Sialic Acids in Biological Processes.
Chem Asian J. 2019 May 2;14(9):1344-1355. doi: 10.1002/asia.201900031. Epub 2019 Apr 10.
6
Sensing with photoluminescent semiconductor quantum dots.
Methods Appl Fluoresc. 2019 Jan 24;7(1):012005. doi: 10.1088/2050-6120/aaf6f8.
7
Efficient Assembly of Quantum Dots with Homogenous Glycans Derived from Natural N-Linked Glycoproteins.
Bioconjug Chem. 2018 Sep 19;29(9):3144-3153. doi: 10.1021/acs.bioconjchem.8b00477. Epub 2018 Aug 20.
9
Permethylated-β-Cyclodextrin Capped CdTe Quantum Dot and its Sensitive Fluorescence Analysis of Malachite Green.
J Fluoresc. 2015 Sep;25(5):1397-402. doi: 10.1007/s10895-015-1630-1. Epub 2015 Aug 7.

本文引用的文献

1
Nanoparticles as biochemical sensors.
Nanotechnol Sci Appl. 2010 Sep 23;3:65-76. doi: 10.2147/NSA.S8199.
2
3
Unconventional chain-growth mode in the assembly of colloidal gold nanoparticles.
Angew Chem Int Ed Engl. 2012 Aug 6;51(32):8021-5. doi: 10.1002/anie.201203088. Epub 2012 Jul 18.
4
Setting the environmental conditions for controlling gold nanoparticle assemblies.
Angew Chem Int Ed Engl. 2012 Jul 16;51(29):7142-5. doi: 10.1002/anie.201203291. Epub 2012 Jun 13.
5
Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays.
J Biol Chem. 2012 Jun 29;287(27):22593-608. doi: 10.1074/jbc.M112.359323. Epub 2012 May 1.
6
Ultra-fast pg/ml anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence.
Anal Biochem. 2012 Jun 1;425(1):54-61. doi: 10.1016/j.ab.2012.02.040. Epub 2012 Mar 6.
8
Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer.
Cancer Res. 2011 May 1;71(9):3352-63. doi: 10.1158/0008-5472.CAN-10-4102. Epub 2011 Apr 19.
9
Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles.
Bioconjug Chem. 2010 Dec 15;21(12):2250-6. doi: 10.1021/bc1002423. Epub 2010 Nov 11.
10
Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid.
J Exp Med. 2010 Aug 2;207(8):1637-46. doi: 10.1084/jem.20100575. Epub 2010 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验