Suppr超能文献

反刍甲烷杆菌的420因子依赖性吡啶核苷酸连接氢化酶系统。

Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminantium.

作者信息

Tzeng S F, Wolfe R S, Bryant M P

出版信息

J Bacteriol. 1975 Jan;121(1):184-91. doi: 10.1128/jb.121.1.184-191.1975.

Abstract

Methanobacterium ruminantium was shown to possess a nicotinamide adenine dinucleotide phosphate (NADP)-linked factor 420 (F420)-dependent hydrogenase system. This system was also shown to be present in Methanobacterium strain MOH. The hydrogenase system of M. ruminantium also links directly to F420, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), methyl viologen, and Fe-3 plus. It has a pH optimum of about 8 and an apparent Km for F420 of about 5 x 10-6 M at pH 8 when NADP is the electron acceptor. The F420-NADP oxidoreductase activity is inactive toward nicotinamide adenine dinucleotide (nad) and no NADPH:NAD or FADH2(FMNH2):NAD transhydrogenase system was detected. Neither crude ferredoxin nor boiled crude extract of Clostridium pasteuranum could replace F420 in the NADP-linked hydrogenase reaction of M. ruminantium. Also, neitther F420 nor a curde "ferredoxin" fraction from M. ruminantium extracts could substitute for ferredoxin in the pyruvate-ferredoxin oxidoreductase reaction of C. pasteurianum.

摘要

已证明反刍甲烷杆菌拥有一种与烟酰胺腺嘌呤二核苷酸磷酸(NADP)相连的4黄素腺嘌呤二核苷酸(F420)依赖性氢化酶系统。该系统也存在于甲烷杆菌MOH菌株中。反刍甲烷杆菌的氢化酶系统还直接与F420、黄素腺嘌呤二核苷酸(FAD)、黄素单核苷酸(FMN)、甲基紫精和Fe3+相连。当NADP作为电子受体时,其最适pH约为8,在pH 8时F420的表观Km约为5×10-6M。F420-NADP氧化还原酶活性对烟酰胺腺嘌呤二核苷酸(NAD)无活性,未检测到NADPH:NAD或FADH2(FMNH2):NAD转氢酶系统。粗制铁氧化还原蛋白或巴氏芽孢梭菌的煮沸粗提取物均不能在反刍甲烷杆菌的NADP连接的氢化酶反应中替代F420。此外,反刍甲烷杆菌提取物中的F420或粗制“铁氧化还原蛋白”组分均不能在巴氏芽孢梭菌的丙酮酸-铁氧化还原蛋白氧化还原酶反应中替代铁氧化还原蛋白。

相似文献

1
Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminantium.
J Bacteriol. 1975 Jan;121(1):184-91. doi: 10.1128/jb.121.1.184-191.1975.
2
Factor 420-dependent pyridine nucleotide-linked formate metabolism of Methanobacterium ruminantium.
J Bacteriol. 1975 Jan;121(1):192-6. doi: 10.1128/jb.121.1.192-196.1975.
3
A ferredoxin-linked sulfite reductase from Clostridium pasteurianum.
Can J Microbiol. 1971 Jul;17(7):889-95. doi: 10.1139/m71-142.
4
Distribution of coenzyme F420 and properties of its hydrolytic fragments.
J Bacteriol. 1979 Oct;140(1):20-7. doi: 10.1128/jb.140.1.20-27.1979.
5
Reduction of 2-, 4- and 5-nitroimidazole drugs by hydrogenase 1 in Clostridium pasteurianum.
J Antimicrob Chemother. 1990 Jan;25(1):15-23. doi: 10.1093/jac/25.1.15.
8
FAD requirement for the reduction of coenzyme F420 by hydrogenase from Methanobacterium formicicum.
Biochem Biophys Res Commun. 1984 May 16;120(3):775-81. doi: 10.1016/s0006-291x(84)80174-6.
10
Properties of formate dehydrogenase in Methanobacterium formicicum.
J Bacteriol. 1982 Apr;150(1):1-7. doi: 10.1128/jb.150.1.1-7.1982.

引用本文的文献

1
Tandem ketone reduction in pepstatin biosynthesis reveals an FH-dependent statine pathway.
Nat Commun. 2025 May 15;16(1):4531. doi: 10.1038/s41467-025-59785-0.
2
Pilot Scale Production of a F Precursor Under Microaerobic Conditions.
Biotechnol J. 2025 Mar;20(3):e70002. doi: 10.1002/biot.70002.
3
4
Discovery and characterization of an F-dependent glucose-6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1.
Appl Microbiol Biotechnol. 2017 Apr;101(7):2831-2842. doi: 10.1007/s00253-016-8038-y. Epub 2016 Dec 13.
5
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.
Microbiol Mol Biol Rev. 2016 Apr 27;80(2):451-93. doi: 10.1128/MMBR.00070-15. Print 2016 Jun.
6
Rumen methanogens: a review.
Indian J Microbiol. 2010 Sep;50(3):253-62. doi: 10.1007/s12088-010-0061-6. Epub 2010 Oct 30.
7
Metabolic engineering of cofactor F420 production in Mycobacterium smegmatis.
PLoS One. 2010 Dec 29;5(12):e15803. doi: 10.1371/journal.pone.0015803.
8
Effect of Sulfur-Containing Compounds on Growth of Methanosarcina barkeri in Defined Medium.
Appl Environ Microbiol. 1986 Oct;52(4):617-22. doi: 10.1128/aem.52.4.617-622.1986.
9
Comparison of methane production rate and coenzyme f(420) content of methanogenic consortia in anaerobic granular sludge.
Appl Environ Microbiol. 1985 May;49(5):1142-5. doi: 10.1128/aem.49.5.1142-1145.1985.
10
Anaerobic degradation of cellulose and formation of methane.
Folia Microbiol (Praha). 1982;27(5):354-62. doi: 10.1007/BF02883139.

本文引用的文献

1
The anaerobic mesophilic cellulolytic bacteria.
Bacteriol Rev. 1950 Mar;14(1):1-49. doi: 10.1128/br.14.1.1-49.1950.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
An electron transport factor from Clostridium pasteurianum.
Biochem Biophys Res Commun. 1962 Jun 4;7:448-52. doi: 10.1016/0006-291x(62)90333-9.
4
Experiments on the methane bacteria in sludge.
Can J Microbiol. 1954 Aug;1(1):55-64. doi: 10.1139/m55-008.
5
BACTERIAL FERREDOXIN.
Bacteriol Rev. 1964 Dec;28(4):497-517. doi: 10.1128/br.28.4.497-517.1964.
6
Isolation and characterization of Methanobacterium ruminantium n. sp.
J Bacteriol. 1958 Jun;75(6):713-8. doi: 10.1128/jb.75.6.713-718.1958.
7
Hydrogenase measurement with photochemically reduced methyl viologen.
J Bacteriol. 1969 Apr;98(1):51-5. doi: 10.1128/jb.98.1.51-55.1969.
8
Cobamide-dependent methanol-cyanocob(I)alamin methyltransferase of Methanosarcina barkeri.
Arch Biochem Biophys. 1968 Mar 20;124(1):314-24. doi: 10.1016/0003-9861(68)90333-0.
9
Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis.
J Bacteriol. 1968 Mar;95(3):1118-23. doi: 10.1128/jb.95.3.1118-1123.1968.
10
Hydrogen-oxidizing methane bacteria. II. Electron microscopy.
J Bacteriol. 1968 Mar;95(3):1124-9. doi: 10.1128/jb.95.3.1124-1129.1968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验