Suppr超能文献

含硫化合物对产甲烷八叠球菌在限定培养基中生长的影响。

Effect of Sulfur-Containing Compounds on Growth of Methanosarcina barkeri in Defined Medium.

机构信息

Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Saijo-Cho, Higashi-Hiroshima, 724, Japan.

出版信息

Appl Environ Microbiol. 1986 Oct;52(4):617-22. doi: 10.1128/aem.52.4.617-622.1986.

Abstract

Methanosarcina barkeri Fusaro (DSM 804) could grow on methanol in a mineral medium containing cysteine or thiosulfate as the sole sulfur source. Optimum growth occurred at cysteine concentrations of 1 to 2.8 mM and at thiosulfate concentrations of 2.5 to 5 mM. No inhibition of growth was observed even when these concentrations were doubled in the culture medium. Under the optimum cysteine and thiosulfate concentrations, the generation times of the organism were about 8 to 10 and 10 to 12 h, respectively, giving a cell yield of about 0.14 to 0.17 and 0.08 to 0.11 g (dry weight)/g of methanol consumed. The organism metabolized cysteine and thiosulfate during growth, giving rise to sulfide in the culture medium. H(2)S evolution from cysteine and thiosulfate was catalyzed by two enzymes, namely cysteine desulfhydrase and thiosulfate reductase, respectively, as revealed by enzyme assay in the crude cell-free extract of the organism.

摘要

巴氏甲烷八叠球菌 Fusaro(DSM 804)可以在含有半胱氨酸或硫代硫酸盐作为唯一硫源的矿物培养基上利用甲醇生长。最佳生长发生在半胱氨酸浓度为 1 至 2.8 mM 和硫代硫酸盐浓度为 2.5 至 5 mM 时。即使在培养基中这些浓度加倍,也没有观察到生长受到抑制。在最佳半胱氨酸和硫代硫酸盐浓度下,该生物的代时约为 8 至 10 小时和 10 至 12 小时,分别产生约 0.14 至 0.17 和 0.08 至 0.11 g(干重)/消耗的甲醇 g。该生物在生长过程中代谢半胱氨酸和硫代硫酸盐,导致培养基中的硫化物。通过对该生物的粗无细胞提取物中的酶进行酶测定,揭示了 H2S 分别由两种酶(半胱氨酸脱巯基酶和硫代硫酸盐还原酶)催化从半胱氨酸和硫代硫酸盐中释放。

相似文献

1
Effect of Sulfur-Containing Compounds on Growth of Methanosarcina barkeri in Defined Medium.
Appl Environ Microbiol. 1986 Oct;52(4):617-22. doi: 10.1128/aem.52.4.617-622.1986.
2
Impact of mineral and non-mineral sources of iron and sulfur on the metalloproteome of .
Appl Environ Microbiol. 2024 Aug 21;90(8):e0051624. doi: 10.1128/aem.00516-24. Epub 2024 Jul 18.
5
Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
Appl Microbiol Biotechnol. 2017 Sep;101(18):6879-6889. doi: 10.1007/s00253-017-8420-4. Epub 2017 Jul 29.
6
Use of reduced sulfur compounds by Beggiatoa sp.
J Bacteriol. 1981 Jul;147(1):140-54. doi: 10.1128/jb.147.1.140-154.1981.
7
Methanogenesis from Choline by a Coculture of Desulfovibrio sp. and Methanosarcina barkeri.
Appl Environ Microbiol. 1983 Jan;45(1):161-8. doi: 10.1128/aem.45.1.161-168.1983.
8
Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.
Biosci Biotechnol Biochem. 1998;62(6):1087-92. doi: 10.1271/bbb.62.1087.
10
Utilization of Methanol plus Hydrogen by Methanosarcina barkeri for Methanogenesis and Growth.
Appl Environ Microbiol. 1986 Aug;52(2):269-74. doi: 10.1128/aem.52.2.269-274.1986.

引用本文的文献

3
Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.
Appl Environ Microbiol. 2014 Aug;80(15):4599-605. doi: 10.1128/AEM.00895-14.
4
A functional approach to uncover the low-temperature adaptation strategies of the archaeon Methanosarcina barkeri.
Appl Environ Microbiol. 2013 Jul;79(14):4210-9. doi: 10.1128/AEM.03787-12. Epub 2013 May 3.
5
Kinetics of the methanogenic fermentation of acetate.
Appl Environ Microbiol. 1990 Oct;56(10):3158-63. doi: 10.1128/aem.56.10.3158-3163.1990.
6
Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate.
Appl Environ Microbiol. 1990 Mar;56(3):719-23. doi: 10.1128/aem.56.3.719-723.1990.
7
Role of Amino Acids and Vitamins in Nutrition of Mesophilic Methanococcus spp.
Appl Environ Microbiol. 1987 Oct;53(10):2373-8. doi: 10.1128/aem.53.10.2373-2378.1987.
9
Kinetic studies of acetate fermentation by Methanosarcina sp. MSTA-1.
Appl Microbiol Biotechnol. 1990 May;33(2):239-44. doi: 10.1007/BF00176532.

本文引用的文献

1
Sulfide-dependent methane production and growth of a thermophilic methanogenic bacterium.
Appl Environ Microbiol. 1981 Oct;42(4):580-4. doi: 10.1128/aem.42.4.580-584.1981.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
FORMATION OF METHANE BY BACTERIAL EXTRACTS.
J Biol Chem. 1963 Aug;238:2882-6.
6
Mechanism of hydrogen sulfide formation from thiosulfate.
J Bacteriol. 1959 May;77(5):630-7. doi: 10.1128/jb.77.5.630-637.1959.
7
A colorimetric method for the determination of thiosulfate.
Biochim Biophys Acta. 1957 Feb;23(2):412-6. doi: 10.1016/0006-3002(57)90346-3.
8
Isolation of P590 from Methanosarcina barkeri: evidence for the presence of sulfite reductase activity.
Biochem Biophys Res Commun. 1982 Oct 15;108(3):1002-9. doi: 10.1016/0006-291x(82)92099-x.
9
Thiosulfate reductase of Desulfovibrio vulgaris.
J Bacteriol. 1971 May;106(2):603-7. doi: 10.1128/jb.106.2.603-607.1971.
10
A serum bottle modification of the Hungate technique for cultivating obligate anaerobes.
Appl Microbiol. 1974 May;27(5):985-7. doi: 10.1128/am.27.5.985-987.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验