Rogowski Michaela, Scholz Dirk, Geimer Stefan
Lehrstuhl für Genetik NW1, Universität Bayreuth, Bayreuth, Germany.
Methods Enzymol. 2013;524:243-63. doi: 10.1016/B978-0-12-397945-2.00014-7.
Intraflagellar transport (IFT) is an evolutionarily highly conserved, microtubule-based, bidirectional transport system found in eukaryotic cilia/flagella and is indispensable for their assembly, maintenance, and sensory functions. Powered by two different motor complexes, linear arrays of protein particles, called IFT trains, are transported from the base to the tip of the cilium/flagellum and back, carrying axonemal precursors to the tip for assembly and turnover products back to the cell body for recycling. The dynamics of IFT can be visualized using various types of live-cell microscopy techniques, but for analyzing the ultrastructure of IFT trains, transmission electron microscopy is indispensable. The focus of this chapter is to describe the application of the flat embedding technique to Chlamydomonas reinhardtii and monolayers of mammalian culture cells. Such flat embeddings are well suited for the analysis of the ultrastructure of the IFT system by standard electron microscopy and electron tomography.
鞭毛内运输(IFT)是一种在进化上高度保守的、基于微管的双向运输系统,存在于真核生物的纤毛/鞭毛中,对其组装、维持和感觉功能不可或缺。由两种不同的马达复合体驱动,称为IFT列车的蛋白质颗粒线性阵列从纤毛/鞭毛的基部运输到顶端,再返回,将轴丝前体运送到顶端进行组装,并将周转产物运回细胞体进行回收利用。IFT的动力学可以使用各种类型的活细胞显微镜技术进行观察,但对于分析IFT列车的超微结构,透射电子显微镜是必不可少的。本章的重点是描述平面包埋技术在莱茵衣藻和哺乳动物培养细胞单层中的应用。这种平面包埋非常适合通过标准电子显微镜和电子断层扫描分析IFT系统的超微结构。