Vijayan Viji, Khandelwal Mayuri, Manglani Kapil, Singh Rajiv Ranjan, Gupta Sarika, Surolia Avadhesha
Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
Molecular Sciences Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
Free Radic Biol Med. 2013 Aug;61:72-84. doi: 10.1016/j.freeradbiomed.2013.03.004. Epub 2013 Mar 15.
In this study we determined the molecular mechanisms of how homocysteine differentially affects receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) synthesis in the bone. The results showed that oxidative stress induced by homocysteine deranges insulin-sensitive FOXO1 and MAP kinase signaling cascades to decrease OPG and increase RANKL synthesis in osteoblast cultures. We observed that downregulation of insulin/FOXO1 and p38 MAP kinase signaling mechanisms due to phosphorylation of protein phosphatase 2A (PP2A) was the key event that inhibited OPG synthesis in homocysteine-treated osteoblast cultures. siRNA knockdown experiments confirmed that FOXO1 is integral to OPG and p38 synthesis. Conversely homocysteine increased RANKL synthesis in osteoblasts through c-Jun/JNK MAP kinase signaling mechanisms independent of FOXO1. In the rat bone milieu, high-methionine diet-induced hyperhomocysteinemia lowered FOXO1 and OPG expression and increased synthesis of proresorptive and inflammatory cytokines such as RANKL, M-CSF, IL-1α, IL-1β, G-CSF, GM-CSF, MIP-1α, IFN-γ, IL-17, and TNF-α. Such pathophysiological conditions were exacerbated by ovariectomy. Lowering the serum homocysteine level by a simultaneous supplementation with N-acetylcysteine improved OPG and FOXO1 expression and partially antagonized RANKL and proresorptive cytokine synthesis in the bone milieu. These results emphasize that hyperhomocysteinemia alters the redox regulatory mechanism in the osteoblast by activating PP2A and deranging FOXO1 and MAPK signaling cascades, eventually shifting the OPG:RANKL ratio toward increased osteoclast activity and decreased bone quality.
在本研究中,我们确定了同型半胱氨酸如何差异性地影响骨中核因子κB受体激活剂配体(RANKL)和骨保护素(OPG)合成的分子机制。结果表明,同型半胱氨酸诱导的氧化应激扰乱了胰岛素敏感的FOXO1和丝裂原活化蛋白激酶(MAP激酶)信号级联反应,从而降低成骨细胞培养物中OPG的合成并增加RANKL的合成。我们观察到,由于蛋白磷酸酶2A(PP2A)磷酸化导致胰岛素/FOXO1和p38 MAP激酶信号传导机制下调,是同型半胱氨酸处理的成骨细胞培养物中抑制OPG合成的关键事件。小干扰RNA(siRNA)敲低实验证实,FOXO1对于OPG和p38的合成不可或缺。相反,同型半胱氨酸通过独立于FOXO1的c-Jun/应激活化蛋白激酶(JNK)MAP激酶信号传导机制增加成骨细胞中RANKL的合成。在大鼠骨环境中,高蛋氨酸饮食诱导的高同型半胱氨酸血症降低了FOXO1和OPG的表达,并增加了促吸收和炎性细胞因子的合成,如RANKL、巨噬细胞集落刺激因子(M-CSF)、白细胞介素-1α(IL-1α)、白细胞介素-1β(IL-1β)、粒细胞集落刺激因子(G-CSF)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、巨噬细胞炎性蛋白-1α(MIP-1α)、干扰素-γ(IFN-γ)、白细胞介素-17(IL-17)和肿瘤坏死因子-α(TNF-α)。卵巢切除术加剧了这种病理生理状况。同时补充N-乙酰半胱氨酸降低血清同型半胱氨酸水平,改善了OPG和FOXO1的表达,并部分拮抗了骨环境中RANKL和促吸收细胞因子的合成。这些结果强调,高同型半胱氨酸血症通过激活PP2A并扰乱FOXO1和丝裂原活化蛋白激酶(MAPK)信号级联反应,改变了成骨细胞中的氧化还原调节机制,最终使OPG:RANKL比值向破骨细胞活性增加和骨质量降低的方向转变。