Departamento de Engenharia Metalúrgica e de Materiais–Universidade Federal de Minas Gerais,
Biomed Mater. 2013 Apr;8(2):025011. doi: 10.1088/1748-6041/8/2/025011. Epub 2013 Mar 15.
Nanotechnology offers a new strategy to develop novel bioactive materials, given that nano-scaled biomaterials exhibit an enhanced biocompatibility and bioactivity. In this work, we developed a method for the synthesis of spherical bioactive glass nanoparticles (BGNP) aimed at producing biomaterials for potential use in the repair of hard tissues. The BGNP were prepared using the sol-gel process based on the reaction of alkoxides and other precursors in aqueous media for obtaining the oxide-ternary system with the stoichiometric proportion of 60% SiO2, 36% CaO and 4% P2O5. The system was extensively characterized by Fourier transform infrared, x-ray diffraction and scanning electron microscope/energy-dispersive x-ray spectroscopy with regard to chemical composition, crystallinity and morphology. Moreover, the results suggested the BGNP to be highly bioactive, which was confirmed by the formation of a hydroxyapatite biomimetic layer on the material surfaces upon immersion in simulated body fluid solution. In addition, the bioactivity response toward the developed BGNPs was assessed by direct contact of osteoblast cells using resazurin and alkaline phosphatase assays. The new BGNP have presented a significant increase in the osteoblast in vitro cytocompatibility behavior as compared to similar micro-sized bioactive glass particles. Such improvement in the overall bioactive behavior of BGNP was attributed to the much higher surface area causing enhanced interactions at the cell-nanomaterial interfaces. Hence, based on the results, the BGNP produced are the biomaterials to be potentially utilized in hard tissue engineering applications.
纳米技术为开发新型生物活性材料提供了新策略,因为纳米级生物材料表现出增强的生物相容性和生物活性。在这项工作中,我们开发了一种合成球形生物活性玻璃纳米颗粒(BGNP)的方法,旨在生产潜在用于硬组织修复的生物材料。BGNP 是通过溶胶-凝胶工艺制备的,该工艺基于烷氧基和其他前体在水介质中的反应,以获得具有 60%SiO2、36%CaO 和 4%P2O5 化学计量比的氧化物-三元体系。通过傅里叶变换红外光谱、X 射线衍射和扫描电子显微镜/能谱对该体系的化学组成、结晶度和形态进行了广泛的表征。此外,结果表明 BGNP 具有很高的生物活性,这通过将材料浸泡在模拟体液溶液中在材料表面形成羟基磷灰石仿生层得到了证实。此外,通过使用 Resazurin 和碱性磷酸酶测定法直接接触成骨细胞,评估了开发的 BGNP 的生物活性响应。与类似的微尺度生物活性玻璃颗粒相比,新的 BGNP 显著提高了成骨细胞的体外细胞相容性。BGNP 的整体生物活性的这种提高归因于更高的比表面积,从而增强了细胞-纳米材料界面的相互作用。因此,根据结果,所生产的 BGNP 是潜在可用于硬组织工程应用的生物材料。