文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications.

作者信息

Dorozhkin Sergey V

出版信息

Biomatter. 2011 Oct-Dec;1(2):121-64. doi: 10.4161/biom.18790.


DOI:10.4161/biom.18790
PMID:23507744
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3549886/
Abstract

The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/18ef6b95bcf8/biom-1-121-g16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/05ee5be9eed2/biom-1-121-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/6c00c4de04a2/biom-1-121-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/5845f2341e0d/biom-1-121-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/e82146fab000/biom-1-121-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/24dd431c5b85/biom-1-121-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/900733d589e7/biom-1-121-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/4860fb767dcf/biom-1-121-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/d5fa6f6a7975/biom-1-121-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/58b2000e4a32/biom-1-121-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/e1fe6fc45211/biom-1-121-g14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/a6b47e74c3d0/biom-1-121-g9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/7cfb45ebaa3e/biom-1-121-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/70b2f5071a84/biom-1-121-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/111947dc5304/biom-1-121-g13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/68c058a6a5d8/biom-1-121-g15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/18ef6b95bcf8/biom-1-121-g16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/05ee5be9eed2/biom-1-121-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/6c00c4de04a2/biom-1-121-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/5845f2341e0d/biom-1-121-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/e82146fab000/biom-1-121-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/24dd431c5b85/biom-1-121-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/900733d589e7/biom-1-121-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/4860fb767dcf/biom-1-121-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/d5fa6f6a7975/biom-1-121-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/58b2000e4a32/biom-1-121-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/e1fe6fc45211/biom-1-121-g14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/a6b47e74c3d0/biom-1-121-g9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/7cfb45ebaa3e/biom-1-121-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/70b2f5071a84/biom-1-121-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/111947dc5304/biom-1-121-g13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/68c058a6a5d8/biom-1-121-g15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a5/3549886/18ef6b95bcf8/biom-1-121-g16.jpg

相似文献

[1]
Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications.

Biomatter. 2011

[2]
Calcium orthophosphates (CaPO): occurrence and properties.

Prog Biomater. 2016

[3]
Calcium orthophosphates (CaPO): Occurrence and properties.

Morphologie. 2017-9

[4]
Biological and medical significance of calcium phosphates.

Angew Chem Int Ed Engl. 2002-9-2

[5]
Nanosized and nanocrystalline calcium orthophosphates.

Acta Biomater. 2009-10-25

[6]
Biocomposites and hybrid biomaterials based on calcium orthophosphates.

Biomatter. 2011

[7]
Calcium orthophosphates in dentistry.

J Mater Sci Mater Med. 2013-3-7

[8]
Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials.

Int Rev Cytol. 1997

[9]
Calcium orthophosphates and human beings: a historical perspective from the 1770s until 1940.

Biomatter. 2012

[10]
Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization.

Acta Biomater. 2018-8-25

引用本文的文献

[1]
Controlled Crystallization of Nanocrystalline Apatite via Vapor Diffusion on Bacterial Cellulose Membranes Obtained from Mango Waste.

Cryst Growth Des. 2025-8-8

[2]
Mechanisms of osteopontin-stabilized amorphous calcium phosphate calcification in benign and pre-malignant breast disease.

Sci Rep. 2025-7-4

[3]
Nicotine-induced changes in surface properties of restorative materials and dental enamel: An in vitro study on flavored e-cigarette exposure.

Tob Induc Dis. 2025-5-16

[4]
A new eggshell-derived calcium phosphate bioceramic for tissue engineering: cytotoxicity and histomorphometric study.

Acta Cir Bras. 2025-3-31

[5]
An Unusually Large Submandibular Sialolith: A Case Report.

Cureus. 2024-9-27

[6]
Structure and Properties of Bioactive Titanium Dioxide Surface Layers Produced on NiTi Shape Memory Alloy in Low-Temperature Plasma.

Micromachines (Basel). 2024-7-6

[7]
Synthesis of Chitosan and Ferric-Ion (Fe)-Doped Brushite Mineral Cancellous Bone Scaffolds.

Biomimetics (Basel). 2024-5-21

[8]
SLC34A2 Targets in Calcium/Phosphorus Homeostasis of Mammary Gland and Involvement in Development of Clinical Mastitis in Dairy Cows.

Animals (Basel). 2024-4-24

[9]
Effect of a calcium silicate cement and experimental glass ionomer cements containing calcium orthophosphate particles on demineralized dentin.

Clin Oral Investig. 2024-1-15

[10]
Piezoelectrically and Topographically Engineered Scaffolds for Accelerating Bone Regeneration.

ACS Appl Mater Interfaces. 2024-1-17

本文引用的文献

[1]
Crystallography of Tetracalcium Phosphate.

J Res Natl Bur Stand A Phys Chem. 1965

[2]
Brushite (CaHPO·2HO) to octacalcium phosphate (Ca(HPO)(PO)·5HO) transformation in DMEM solutions at 36.5°C.

Mater Sci Eng C Mater Biol Appl. 2010-1-30

[3]
Structures of Biological Minerals in Dental Research.

J Res Natl Inst Stand Technol. 2001-12-1

[4]
Amorphous Calcium Phosphate-Based Bioactive Polymeric Composites for Mineralized Tissue Regeneration.

J Res Natl Inst Stand Technol. 2003-6-1

[5]
Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material.

J Res Natl Inst Stand Technol. 2004-12-1

[6]
Metastatic pulmonary calcification in a patient with chronic renal failure.

J Radiol Case Rep. 2009

[7]
Biphasic, triphasic and multiphasic calcium orthophosphates.

Acta Biomater. 2011-9-6

[8]
The effects of maternal exposure to food additive E341 (tricalcium phosphate) on foetal development of rats.

Environ Toxicol Pharmacol. 2009-11-24

[9]
How to control the size and morphology of apatite nanocrystals in bone.

Proc Natl Acad Sci U S A. 2010-12-28

[10]
Strongly bound citrate stabilizes the apatite nanocrystals in bone.

Proc Natl Acad Sci U S A. 2010-12-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索