Witkowska Justyna, Borowski Tomasz, Kulikowski Krzysztof, Wunsch Karol, Morgiel Jerzy, Sobiecki Jerzy, Wierzchoń Tadeusz
Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland.
Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 30-059 Krakow, Poland.
Micromachines (Basel). 2024 Jul 6;15(7):886. doi: 10.3390/mi15070886.
The NiTi alloy, known for its shape memory and superelasticity, is increasingly used in medicine. However, its high nickel content requires enhanced biocompatibility for long-term implants. Low-temperature plasma treatments under glow-discharge conditions can improve surface properties without compromising mechanical integrity.
This study explores the surface modification of a NiTi alloy by oxidizing it in low-temperature plasma. We examine the impact of process temperatures and sample preparation (mechanical grinding and polishing) on the structure of the produced titanium oxide layers. Surface properties, including topography, morphology, chemical composition, and bioactivity, were analyzed using TEM, SEM, EDS, and an optical profilometer. Bioactivity was assessed through the deposition of calcium phosphate in simulated body fluid (SBF).
The low-temperature plasma oxidization produced titanium dioxide layers (29-55 nm thick) with a predominantly nanocrystalline rutile structure. Layer thickness increased with extended processing time and higher temperatures (up to 390 °C), though the relationship was not linear. Higher temperatures led to thicker layers with more precipitates and inhomogeneities. The oxidized layers showed increased bioactivity after 14 and 30 days in SBF.
Low-temperature plasma oxidation produces bioactive titanium oxide layers on NiTi alloys, with a structure and properties that can be tuned through process parameters. This method could enhance the biocompatibility of NiTi alloys for medical implants.
镍钛合金以其形状记忆和超弹性而闻名,在医学领域的应用日益广泛。然而,其高镍含量要求长期植入时具有更高的生物相容性。辉光放电条件下的低温等离子体处理可以改善表面性能,同时不影响机械完整性。
本研究通过在低温等离子体中氧化镍钛合金来探索其表面改性。我们研究了工艺温度和样品制备(机械研磨和抛光)对所生成的氧化钛层结构的影响。使用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、能谱仪(EDS)和光学轮廓仪分析了表面性质,包括形貌、形态、化学成分和生物活性。通过在模拟体液(SBF)中磷酸钙的沉积来评估生物活性。
低温等离子体氧化产生了二氧化钛层(厚度为29 - 55纳米),主要为纳米晶金红石结构。层厚度随着处理时间的延长和温度的升高(高达390°C)而增加,尽管这种关系不是线性的。较高的温度导致层更厚,有更多的沉淀物和不均匀性。在SBF中放置14天和30天后,氧化层的生物活性增强。
低温等离子体氧化在镍钛合金上产生具有生物活性的氧化钛层,其结构和性能可通过工艺参数进行调整。该方法可以提高镍钛合金在医疗植入物中的生物相容性。