National Institute for Nanotechnology, Edmonton, AB, Canada T6G 2M9.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5326-30. doi: 10.1073/pnas.1221643110. Epub 2013 Mar 18.
In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5-22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8-22 nm. Transport in the 8-22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8-22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1-5 nm associated with quantum-mechanical tunneling.
在这项工作中,我们弥合了分子结中的短程隧穿和体有机薄膜中活化跳跃之间的差距,极大地扩展了分子电子器件中电荷输运的距离范围。在碳接触之间的 4.5-22nm 厚的寡聚噻吩层中观察到了三种不同的输运机制,当 d < 8nm 时,隧道作用起作用,当 d > 16nm 时,高温和低偏压下的活化跳跃,以及第三种机制与最高占据分子轨道或界面态的场致电离一致,当 d = 8-22nm 时生成电荷载流子。8-22nm 范围内的输运对温度的依赖性较弱,具有与电场相关的激活势垒,在中等偏压下可忽略不计。因此,我们在这里报告了一种独特的无活化输运机制,在不涉及跳跃的情况下,在 8-22nm 的距离上有效,这严重限制了有机半导体中的载流子迁移率和器件寿命。因此,分子电子结中的电荷输运可以有效地用于传输距离远远大于与量子力学隧道相关的 1-5nm。