Suppr超能文献

分子电子结中 4.5 至 22nm 的无活化电荷输运。

Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions.

机构信息

National Institute for Nanotechnology, Edmonton, AB, Canada T6G 2M9.

出版信息

Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5326-30. doi: 10.1073/pnas.1221643110. Epub 2013 Mar 18.

Abstract

In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5-22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d < 8 nm, activated hopping when d > 16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8-22 nm. Transport in the 8-22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8-22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1-5 nm associated with quantum-mechanical tunneling.

摘要

在这项工作中,我们弥合了分子结中的短程隧穿和体有机薄膜中活化跳跃之间的差距,极大地扩展了分子电子器件中电荷输运的距离范围。在碳接触之间的 4.5-22nm 厚的寡聚噻吩层中观察到了三种不同的输运机制,当 d < 8nm 时,隧道作用起作用,当 d > 16nm 时,高温和低偏压下的活化跳跃,以及第三种机制与最高占据分子轨道或界面态的场致电离一致,当 d = 8-22nm 时生成电荷载流子。8-22nm 范围内的输运对温度的依赖性较弱,具有与电场相关的激活势垒,在中等偏压下可忽略不计。因此,我们在这里报告了一种独特的无活化输运机制,在不涉及跳跃的情况下,在 8-22nm 的距离上有效,这严重限制了有机半导体中的载流子迁移率和器件寿命。因此,分子电子结中的电荷输运可以有效地用于传输距离远远大于与量子力学隧道相关的 1-5nm。

相似文献

1
Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions.分子电子结中 4.5 至 22nm 的无活化电荷输运。
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5326-30. doi: 10.1073/pnas.1221643110. Epub 2013 Mar 18.
2
Carbon-Based Molecular Junctions for Practical Molecular Electronics.用于实用分子电子学的碳基分子结。
Acc Chem Res. 2022 Oct 4;55(19):2766-2779. doi: 10.1021/acs.accounts.2c00401. Epub 2022 Sep 22.
7
Light Emission as a Probe of Energy Losses in Molecular Junctions.作为分子结能量损耗探针的发光现象。
J Am Chem Soc. 2016 Jan 27;138(3):722-5. doi: 10.1021/jacs.5b10018. Epub 2016 Jan 14.

引用本文的文献

3
New Perspective on Electron Transfer through Molecules.通过分子的电子转移新视角。
J Phys Chem Lett. 2022 Dec 22;13(50):11753-11759. doi: 10.1021/acs.jpclett.2c03141. Epub 2022 Dec 14.
9
Functional Redox-Active Molecular Tunnel Junctions.功能型氧化还原活性分子隧道结。
Chem Asian J. 2020 Nov 16;15(22):3752-3770. doi: 10.1002/asia.202000932. Epub 2020 Oct 14.

本文引用的文献

2
Fibers of reduced graphene oxide nanoribbons.还原氧化石墨烯纳米带纤维。
Nanotechnology. 2012 Jun 15;23(23):235601. doi: 10.1088/0957-4484/23/23/235601. Epub 2012 May 17.
7
All-carbon molecular tunnel junctions.全碳分子隧道结。
J Am Chem Soc. 2011 Nov 30;133(47):19168-77. doi: 10.1021/ja206619a. Epub 2011 Nov 8.
8
Assembling molecular electronic junctions one molecule at a time.逐个分子组装分子电子结。
Nano Lett. 2011 Nov 9;11(11):4725-9. doi: 10.1021/nl202495k. Epub 2011 Oct 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验