Chen Xiaoping, Kretz Bernhard, Adoah Francis, Nickle Cameron, Chi Xiao, Yu Xiaojiang, Del Barco Enrique, Thompson Damien, Egger David A, Nijhuis Christian A
Department of Chemistry, National University of Singapore, Singapore, Singapore.
Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
Nat Commun. 2021 Jun 8;12(1):3432. doi: 10.1038/s41467-021-23528-8.
We present an efficient strategy to modulate tunnelling in molecular junctions by changing the tunnelling decay coefficient, β, by terminal-atom substitution which avoids altering the molecular backbone. By varying X = H, F, Cl, Br, I in junctions with S(CH)X, current densities (J) increase >4 orders of magnitude, creating molecular conductors via reduction of β from 0.75 to 0.25 Å. Impedance measurements show tripled dielectric constants (ε) with X = I, reduced HOMO-LUMO gaps and tunnelling-barrier heights, and 5-times reduced contact resistance. These effects alone cannot explain the large change in β. Density-functional theory shows highly localized, X-dependent potential drops at the S(CH)X//electrode interface that modifies the tunnelling barrier shape. Commonly-used tunnelling models neglect localized potential drops and changes in ε. Here, we demonstrate experimentally that [Formula: see text], suggesting highly-polarizable terminal-atoms act as charge traps and highlighting the need for new charge transport models that account for dielectric effects in molecular tunnelling junctions.
我们提出了一种有效的策略,通过端原子取代来改变隧穿衰减系数β,从而调节分子结中的隧穿,同时避免改变分子主链。通过在与S(CH)X形成的结中改变X = H、F、Cl、Br、I,电流密度(J)增加了超过4个数量级,通过将β从0.75 Å降低到0.25 Å创造出分子导体。阻抗测量表明,当X = I时,介电常数(ε)增加了两倍,HOMO-LUMO能隙和隧穿势垒高度降低,接触电阻降低了5倍。仅这些效应无法解释β的巨大变化。密度泛函理论表明,在S(CH)X//电极界面处存在高度局域化的、与X相关的电势降,这改变了隧穿势垒的形状。常用的隧穿模型忽略了局域电势降和ε的变化。在这里,我们通过实验证明了[公式:见原文],这表明高极化性的端原子充当电荷陷阱,并突出了需要新的电荷传输模型来考虑分子隧穿结中的介电效应。