Suppr超能文献

纳米颗粒介导的基因沉默赋予体内唾液腺辐射防护作用。

Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo.

机构信息

Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.

出版信息

Mol Ther. 2013 Jun;21(6):1182-94. doi: 10.1038/mt.2013.42. Epub 2013 Mar 19.

Abstract

Radiation treatment of head and neck cancers causes irreversible damage of the salivary glands (SG). Here, we introduce a preclinical mouse model for small-interfering RNA (siRNA)-based gene silencing to provide protection of SG from radiation-induced apoptosis. Novel, pH-responsive nanoparticles complexed with siRNAs were introduced into mouse submandibular glands (SMG) by retroductal injection to modulate gene expression in vivo. To validate this approach, we first targeted Nkcc1, an ion transporter that is essential for saliva secretion. Nkcc1 siRNA delivery resulted in efficient knockdown, as quantified at the mRNA and the protein levels, and the functional result of Nkcc1 knockdown phenocopied the severe decrease in saliva secretion, characteristic of the systemic Nkcc1 gene knockout. To establish a strategy to prevent apoptotic cell loss due to radiation damage, siRNAs targeting the proapoptotic Pkcδ gene were administered into SMG before ionizing radiation. Knockdown of Pkcδ not only reduced the number of apoptotic cells during the acute phase of radiation damage, but also markedly improved saliva secretion at 3 months in irradiated animals, indicating that this treatment confers protection from hyposalivation. These results demonstrate that nanoparticle delivery of siRNAs targeting a proapoptotic gene is a localized, nonviral, and effective means of conferring radioprotection to the SGs.

摘要

头颈部癌症的放射治疗会导致唾液腺(SG)不可逆转的损伤。在这里,我们引入了一种基于小干扰 RNA(siRNA)的基因沉默的临床前小鼠模型,以提供对 SG 免受辐射诱导的细胞凋亡的保护。通过逆行注射将新型 pH 响应型纳米颗粒与 siRNA 复合物引入小鼠颌下腺(SMG)中,以在体内调节基因表达。为了验证这种方法,我们首先靶向 Nkcc1,一种对唾液分泌至关重要的离子转运体。Nkcc1 siRNA 的递送导致了高效的基因敲低,这可以从 mRNA 和蛋白质水平进行量化,并且 Nkcc1 敲低的功能结果模拟了系统性 Nkcc1 基因敲除导致的唾液分泌严重减少。为了建立一种预防由于辐射损伤导致的凋亡细胞丢失的策略,在电离辐射之前将靶向促凋亡 Pkcδ 基因的 siRNA 递送到 SMG 中。Pkcδ 的敲低不仅减少了辐射损伤急性期的凋亡细胞数量,而且还显著改善了照射动物 3 个月时的唾液分泌,表明这种治疗赋予了对低唾液分泌的保护作用。这些结果表明,针对促凋亡基因的 siRNA 的纳米颗粒递送是一种局部、非病毒且有效的方法,可以为 SG 提供放射保护。

相似文献

1
Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo.
Mol Ther. 2013 Jun;21(6):1182-94. doi: 10.1038/mt.2013.42. Epub 2013 Mar 19.
3
Decrease in salivary secretion by radiation mediated by nitric oxide and prostaglandins.
Neuroimmunomodulation. 2006;13(1):19-27. doi: 10.1159/000093194. Epub 2006 May 10.
4
Localized Delivery of Amifostine Enhances Salivary Gland Radioprotection.
J Dent Res. 2018 Oct;97(11):1252-1259. doi: 10.1177/0022034518767408. Epub 2018 Apr 10.
5
Botulinum Toxin Confers Radioprotection in Murine Salivary Glands.
Int J Radiat Oncol Biol Phys. 2016 Apr 1;94(5):1190-7. doi: 10.1016/j.ijrobp.2015.12.371. Epub 2015 Dec 29.
7
TAT-mediated delivery of Tousled protein to salivary glands protects against radiation-induced hypofunction.
Int J Radiat Oncol Biol Phys. 2012 Sep 1;84(1):257-65. doi: 10.1016/j.ijrobp.2011.10.064. Epub 2012 Jan 26.
8
Recombinant AAV9-TLK1B administration ameliorates fractionated radiation-induced xerostomia.
Hum Gene Ther. 2013 Jun;24(6):604-12. doi: 10.1089/hum.2012.235.
9
Histamine prevents functional and morphological alterations of submandibular glands induced by ionising radiation.
Int J Radiat Biol. 2011 Mar;87(3):284-92. doi: 10.3109/09553002.2010.533247. Epub 2010 Dec 10.

引用本文的文献

1
Advancing Head and Neck Cancer Therapies: From Conventional Treatments to Emerging Strategies.
Biomedicines. 2025 Apr 25;13(5):1046. doi: 10.3390/biomedicines13051046.
2
Salivary Gland Bioengineering.
Bioengineering (Basel). 2023 Dec 26;11(1):28. doi: 10.3390/bioengineering11010028.
3
Metabolomics analysis of pathways underlying radiation-induced salivary gland dysfunction stages.
PLoS One. 2023 Nov 20;18(11):e0294355. doi: 10.1371/journal.pone.0294355. eCollection 2023.
4
Gene Therapeutic Delivery to the Salivary Glands.
Adv Exp Med Biol. 2023;1436:55-68. doi: 10.1007/5584_2023_766.
5
Identification of nanoparticle-mediated siRNA-ASPN as a key gene target in the treatment of keloids.
Front Bioeng Biotechnol. 2022 Oct 28;10:1025546. doi: 10.3389/fbioe.2022.1025546. eCollection 2022.
7
Effect of nanoparticle-mediated delivery of SFRP4 siRNA for treating Dupuytren disease.
Gene Ther. 2023 Feb;30(1-2):31-40. doi: 10.1038/s41434-022-00330-9. Epub 2022 Mar 28.
8
Salivary gland function, development, and regeneration.
Physiol Rev. 2022 Jul 1;102(3):1495-1552. doi: 10.1152/physrev.00015.2021. Epub 2022 Mar 28.
9
Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment.
Materials (Basel). 2022 Mar 11;15(6):2086. doi: 10.3390/ma15062086.
10
Pharmacological Activation of cGAS for Cancer Immunotherapy.
Front Immunol. 2021 Nov 26;12:753472. doi: 10.3389/fimmu.2021.753472. eCollection 2021.

本文引用的文献

1
Protein kinase cδ in apoptosis: a brief overview.
Arch Immunol Ther Exp (Warsz). 2012 Oct;60(5):361-72. doi: 10.1007/s00005-012-0188-8. Epub 2012 Aug 24.
4
Progress toward in vivo use of siRNAs-II.
Mol Ther. 2012 Mar;20(3):483-512. doi: 10.1038/mt.2011.263. Epub 2011 Dec 20.
5
Gene delivery in salivary glands: from the bench to the clinic.
Biochim Biophys Acta. 2011 Nov;1812(11):1515-21. doi: 10.1016/j.bbadis.2011.06.014. Epub 2011 Jul 6.
7
Histamine prevents functional and morphological alterations of submandibular glands induced by ionising radiation.
Int J Radiat Biol. 2011 Mar;87(3):284-92. doi: 10.3109/09553002.2010.533247. Epub 2010 Dec 10.
8
Efficient and targeted delivery of siRNA in vivo.
FEBS J. 2010 Dec;277(23):4814-27. doi: 10.1111/j.1742-4658.2010.07904.x.
9
Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis.
Science. 2010 Sep 24;329(5999):1645-7. doi: 10.1126/science.1192046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验