Suppr超能文献

体内使用 siRNAs 的进展 - II。

Progress toward in vivo use of siRNAs-II.

机构信息

Integrated DNA Technologies, Inc., Coralville, Iowa 52241, USA.

出版信息

Mol Ther. 2012 Mar;20(3):483-512. doi: 10.1038/mt.2011.263. Epub 2011 Dec 20.

Abstract

RNA interference (RNAi) has been extensively employed for in vivo research since its use was first demonstrated in mammalian cells 10 years ago. Design rules have improved, and it is now routinely possible to obtain reagents that suppress expression of any gene desired. At the same time, increased understanding of the molecular basis of unwanted side effects has led to the development of chemical modification strategies that mitigate these concerns. Delivery remains the single greatest hurdle to widespread adoption of in vivo RNAi methods. However, exciting advances have been made and new delivery systems under development may help to overcome these barriers. This review discusses advances in RNAi biochemistry and biology that impact in vivo use and provides an overview of select publications that demonstrate interesting applications of these principles. Emphasis is placed on work with synthetic, small interfering RNAs (siRNAs) published since the first installment of this review which appeared in 2006.

摘要

RNA 干扰 (RNAi) 自 10 年前首次在哺乳动物细胞中得到证实以来,已被广泛用于体内研究。设计规则得到了改进,现在通常可以获得抑制所需任何基因表达的试剂。与此同时,对不良副作用分子基础的认识不断提高,导致了化学修饰策略的发展,减轻了这些担忧。传递仍然是广泛采用体内 RNAi 方法的最大障碍。然而,令人兴奋的进展已经取得,新的传递系统的发展可能有助于克服这些障碍。这篇综述讨论了影响体内应用的 RNAi 生物化学和生物学方面的进展,并概述了一些展示这些原理有趣应用的精选出版物。重点是 2006 年首次出现本综述以来发表的关于合成小干扰 RNA(siRNA)的工作。

相似文献

1
Progress toward in vivo use of siRNAs-II.
Mol Ther. 2012 Mar;20(3):483-512. doi: 10.1038/mt.2011.263. Epub 2011 Dec 20.
2
Progress towards in vivo use of siRNAs.
Mol Ther. 2006 Apr;13(4):644-70. doi: 10.1016/j.ymthe.2006.01.001. Epub 2006 Feb 14.
3
Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.
Acc Chem Res. 2020 Sep 15;53(9):1782-1790. doi: 10.1021/acs.accounts.0c00249. Epub 2020 Jul 13.
4
RNA interference as a gene-specific approach for molecular medicine.
Curr Med Chem. 2005;12(26):3143-61. doi: 10.2174/092986705774933489.
5
Nonviral delivery of synthetic siRNAs in vivo.
J Clin Invest. 2007 Dec;117(12):3623-32. doi: 10.1172/JCI33494.
6
Therapeutic face of RNAi: in vivo challenges.
Expert Opin Biol Ther. 2015 Feb;15(2):269-85. doi: 10.1517/14712598.2015.983070. Epub 2014 Nov 15.
7
RNAi therapeutics: an update on delivery.
Curr Opin Mol Ther. 2008 Apr;10(2):158-67.
8
Therapeutic siRNA: principles, challenges, and strategies.
Yale J Biol Med. 2012 Jun;85(2):187-200. Epub 2012 Jun 25.
9
Targeted gene silencing by small interfering RNA-based knock-down technology.
Curr Pharm Biotechnol. 2004 Feb;5(1):1-7. doi: 10.2174/1389201043489558.
10
Vector-based delivery of siRNAs: in vitro and in vivo challenges.
Front Biosci. 2008 May 1;13:3488-93. doi: 10.2741/2943.

引用本文的文献

1
Chemical Modifications in Nucleic Acid Therapeutics.
Methods Mol Biol. 2025;2965:57-126. doi: 10.1007/978-1-0716-4742-4_3.
2
RNA Interference Applied to Crustacean Aquaculture.
Biomolecules. 2024 Oct 25;14(11):1358. doi: 10.3390/biom14111358.
3
Breaking the final barrier: Evolution of cationic and ionizable lipid structure in lipid nanoparticles to escape the endosome.
Adv Drug Deliv Rev. 2024 Nov;214:115446. doi: 10.1016/j.addr.2024.115446. Epub 2024 Sep 16.
4
Strategies for HIV-1 suppression through key genes and cell therapy.
Front Med (Lausanne). 2023 Nov 29;10:1259995. doi: 10.3389/fmed.2023.1259995. eCollection 2023.
5
Engineering polyphenol-based carriers for nucleic acid delivery.
Theranostics. 2023 May 21;13(10):3204-3223. doi: 10.7150/thno.81604. eCollection 2023.
6
Plumbing mysterious RNAs in "dark genome" for the conquest of human diseases.
Mol Ther. 2023 Jun 7;31(6):1577-1595. doi: 10.1016/j.ymthe.2023.05.003. Epub 2023 May 10.
7
Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins.
Toxins (Basel). 2023 Feb 27;15(3):181. doi: 10.3390/toxins15030181.
8
Intercellular delivery of therapeutic oligonucleotides.
J Drug Deliv Sci Technol. 2022 Jun;72. doi: 10.1016/j.jddst.2022.103404. Epub 2022 May 10.
9
Multiplexed shRNA-miRs as a candidate for anti HIV-1 therapy: strategies, challenges, and future potential.
J Genet Eng Biotechnol. 2022 Dec 28;20(1):172. doi: 10.1186/s43141-022-00451-z.

本文引用的文献

1
Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3.
Mol Ther. 2012 Jan;20(1):101-8. doi: 10.1038/mt.2011.212. Epub 2011 Oct 11.
2
Delivery of siRNA to the mouse lung via a functionalized lipopolyamine.
Mol Ther. 2012 Jan;20(1):91-100. doi: 10.1038/mt.2011.210. Epub 2011 Oct 11.
3
Therapeutic siRNA silencing in inflammatory monocytes in mice.
Nat Biotechnol. 2011 Oct 9;29(11):1005-10. doi: 10.1038/nbt.1989.
6
Efficient in vivo delivery of siRNA into brain capillary endothelial cells along with endogenous lipoprotein.
Mol Ther. 2011 Dec;19(12):2213-21. doi: 10.1038/mt.2011.186. Epub 2011 Sep 13.
8
Structural diversity repertoire of gene silencing small interfering RNAs.
Nucleic Acid Ther. 2011 Jun;21(3):125-31. doi: 10.1089/nat.2011.0286.
9
Current progress of siRNA/shRNA therapeutics in clinical trials.
Biotechnol J. 2011 Sep;6(9):1130-46. doi: 10.1002/biot.201100054. Epub 2011 Jul 11.
10
siRNA repositioning for guide strand selection by human Dicer complexes.
Mol Cell. 2011 Jul 8;43(1):110-21. doi: 10.1016/j.molcel.2011.05.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验