Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States.
Nano Lett. 2013 Apr 10;13(4):1736-42. doi: 10.1021/nl4003238. Epub 2013 Mar 25.
When an Au nanoparticle in a liquid medium is illuminated with resonant light of sufficient intensity, a nanometer scale envelope of vapor-a "nanobubble"-surrounding the particle, is formed. This is the nanoscale onset of the well-known process of liquid boiling, occurring at a single nanoparticle nucleation site, resulting from the photothermal response of the nanoparticle. Here we examine bubble formation at an individual metallic nanoparticle in detail. Incipient nanobubble formation is observed by monitoring the plasmon resonance shift of an individual, illuminated Au nanoparticle, when its local environment changes from liquid to vapor. The temperature on the nanoparticle surface is monitored during this process, where a dramatic temperature jump is observed as the nanoscale vapor layer thermally decouples the nanoparticle from the surrounding liquid. By increasing the intensity of the incident light or decreasing the interparticle separation, we observe the formation of micrometer-sized bubbles resulting from the coalescence of nanoparticle-"bound" vapor envelopes. These studies provide the first direct and quantitative analysis of the evolution of light-induced steam generation by nanoparticles from the nanoscale to the macroscale, a process that is of fundamental interest for a growing number of applications.
当液体介质中的金纳米粒子被强度足够的共振光照射时,会在粒子周围形成一个纳米级的蒸汽包层,即“纳米气泡”。这是众所周知的液体沸腾过程在纳米尺度上的起始,发生在单个纳米粒子成核点,是由纳米粒子的光热响应引起的。在这里,我们详细研究了单个金属纳米粒子中的气泡形成。通过监测单个被照射的金纳米粒子的等离子体共振位移,可以观察到初生纳米气泡的形成,当粒子的局部环境从液体变为蒸汽时,等离子体共振位移会发生变化。在这个过程中监测纳米粒子表面的温度,当纳米尺度的蒸汽层与周围液体热隔离时,会观察到温度的急剧上升。通过增加入射光的强度或减小粒子间的距离,我们观察到由于纳米粒子“束缚”的蒸汽包层的合并而形成的微米级气泡的形成。这些研究提供了对纳米颗粒光诱导蒸汽生成从纳米尺度到宏观尺度的演变的直接和定量分析,这一过程对于越来越多的应用具有基础研究意义。