Suppr超能文献

体内通讯的纳米颗粒以增强肿瘤靶向性。

Nanoparticles that communicate in vivo to amplify tumour targeting.

机构信息

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

Nat Mater. 2011 Jun 19;10(7):545-52. doi: 10.1038/nmat3049.

Abstract

Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of 'signalling' modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted 'receiving' nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed of multiple types of signalling and receiving modules, can transmit information through multiple molecular pathways in coagulation, can operate autonomously and can target over 40 times higher doses of chemotherapeutics to tumours than non-communicating controls.

摘要

纳米医学在提高癌症治疗的精准度方面具有巨大潜力,但我们将这些材料有效递送到体内疾病部位的能力仍然非常有限。受通讯能够改善生物系统靶向性(例如炎性细胞募集到疾病部位)的启发,我们构建了这样的系统,其中合成生物学和纳米技术组件进行通信,以在体内放大疾病靶向性。这些系统由“信号”模块(纳米颗粒或工程蛋白)组成,这些模块靶向肿瘤,然后局部激活凝血级联反应,将肿瘤位置广播到循环中的凝血靶向“接收”纳米颗粒,这些颗粒携带诊断或治疗货物,从而放大它们的递送。我们表明,通信纳米颗粒系统可以由多种类型的信号和接收模块组成,可以通过凝血中的多个分子途径传递信息,可以自主运行,并且可以将化疗药物的剂量提高 40 多倍,靶向肿瘤,而非通信对照。

相似文献

3
Role of integrated cancer nanomedicine in overcoming drug resistance.整合癌症纳米医学在克服药物耐药性中的作用。
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1784-802. doi: 10.1016/j.addr.2013.07.012. Epub 2013 Jul 21.
6
New Strategies in Cancer Nanomedicine.癌症纳米医学的新策略。
Annu Rev Pharmacol Toxicol. 2016;56:41-57. doi: 10.1146/annurev-pharmtox-010715-103456. Epub 2015 Oct 28.
8
Nanomedicine Tumor Targeting.纳米医学肿瘤靶向。
Adv Mater. 2024 Jun;36(26):e2312169. doi: 10.1002/adma.202312169. Epub 2024 Apr 12.
9
DePEGylation strategies to increase cancer nanomedicine efficacy.去聚乙二醇化策略提高癌症纳米医学疗效。
Nanoscale Horiz. 2019 Mar 1;4(2):378-387. doi: 10.1039/c8nh00417j. Epub 2018 Dec 11.
10
Tumor-targeted nanomedicines for cancer theranostics.用于癌症诊疗的肿瘤靶向纳米药物。
Pharmacol Res. 2017 Jan;115:87-95. doi: 10.1016/j.phrs.2016.11.014. Epub 2016 Nov 16.

引用本文的文献

2
Swarms can be rational.群体可以是理性的。
Philos Trans A Math Phys Eng Sci. 2025 Jan 30;383(2289):20240136. doi: 10.1098/rsta.2024.0136.
3
Duplex-forming oligocarbamates with tunable nonbonding sites.具有可调节非键合位点的双链形成低聚氨基甲酸酯。
Chem Sci. 2024 May 13;15(24):9138-9146. doi: 10.1039/d4sc00242c. eCollection 2024 Jun 19.
6
Multifunctional nanostructures: Intelligent design to overcome biological barriers.多功能纳米结构:克服生物屏障的智能设计
Mater Today Bio. 2023 May 18;20:100672. doi: 10.1016/j.mtbio.2023.100672. eCollection 2023 Jun.
9
"Targeting Design" of Nanoparticles in Tumor Therapy.肿瘤治疗中纳米粒子的“靶向设计”
Pharmaceutics. 2022 Sep 11;14(9):1919. doi: 10.3390/pharmaceutics14091919.

本文引用的文献

2
From DNA nanotechnology to synthetic biology.从DNA纳米技术到合成生物学。
HFSP J. 2008 Apr;2(2):99-109. doi: 10.2976/1.2896331. Epub 2008 Mar 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验