Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
PLoS One. 2013;8(3):e58695. doi: 10.1371/journal.pone.0058695. Epub 2013 Mar 8.
The purpose of this study was to create a vision-related quality of life (VRQoL) prediction system to identify visual field (VF) test points associated with decreased VRQoL in patients with glaucoma.
VRQoL score was surveyed in 164 patients with glaucoma using the 'Sumi questionnaire'. A binocular VF was created from monocular VFs by using the integrated VF (IVF) method. VRQoL score was predicted using the 'Random Forest' method, based on visual acuity (VA) of better and worse eyes (better-eye and worse-eye VA) and total deviation (TD) values from the IVF. For comparison, VRQoL scores were regressed (linear regression) against: (i) mean of TD (IVF MD); (ii) better-eye VA; (iii) worse-eye VA; and (iv) IVF MD and better- and worse-eye VAs. The rank of importance of IVF test points was identified using the Random Forest method.
The root mean of squared prediction error associated with the Random Forest method (0.30 to 1.97) was significantly smaller than those with linear regression models (0.34 to 3.38, p<0.05, ten-fold cross validation test). Worse-eye VA was the most important variable in all VRQoL tasks. In general, important VF test points were concentrated along the horizontal meridian. Particular areas of the IVF were important for different tasks: peripheral superior and inferior areas in the left hemifield for the 'letters and sentences' task, peripheral, mid-peripheral and para-central inferior regions for the 'walking' task, the peripheral superior region for the 'going out' task, and a broad scattered area across the IVF for the 'dining' task.
The VRQoL prediction model with the Random Forest method enables clinicians to better understand patients' VRQoL based on standard clinical measurements of VA and VF.
本研究旨在建立一个与青光眼患者视功能相关的生活质量(VRQoL)预测系统,以识别视野(VF)测试点与 VRQoL 下降相关。
采用“Sum i 问卷”对 164 例青光眼患者进行 VRQoL 评分调查。通过使用整合 VF(IVF)方法,从单眼 VF 创建双眼 VF。基于更好眼和更差眼的视力(VA)(更好眼 VA 和更差眼 VA)和 IVF 的总偏差(TD)值,使用“随机森林”方法预测 VRQoL 评分。为了比较,将 VRQoL 评分回归(线性回归):(i)IVF MD 的平均值;(ii)更好眼 VA;(iii)更差眼 VA;和(iv)IVF MD 和更好眼和更差眼 VA。使用随机森林方法确定 IVF 测试点的重要性等级。
随机森林方法相关的均方根预测误差(0.30 至 1.97)明显小于线性回归模型(0.34 至 3.38,p<0.05,十折交叉验证测试)。更差眼 VA 是所有 VRQoL 任务中最重要的变量。一般来说,重要的 VF 测试点集中在水平子午线。IVF 的特定区域对于不同的任务很重要:左半视野的周边上部和下部区域对于“字母和句子”任务,外周、中周和下周边区域对于“行走”任务,周边上部区域对于“外出”任务,以及横跨 IVF 的广泛分散区域对于“用餐”任务。
随机森林方法的 VRQoL 预测模型使临床医生能够根据 VA 和 VF 的标准临床测量更好地了解患者的 VRQoL。