Suppr超能文献

用于青光眼病情进展预测的双向神经网络模型

Bidirectional Neural Network Model for Glaucoma Progression Prediction.

作者信息

Hosni Mahmoud Hanan A, Alabdulkreem Eatedal

机构信息

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

J Pers Med. 2023 Feb 23;13(3):390. doi: 10.3390/jpm13030390.

Abstract

Deep learning models are usually utilized to learn from spatial data, only a few studies are proposed to predict glaucoma time progression utilizing deep learning models. In this article, we present a bidirectional recurrent deep learning model (Bi-RM) to detect prospective progressive visual field diagnoses. A dataset of 5413 different eyes from 3321 samples is utilized as the learning phase dataset and 1272 eyes are used for testing. Five consecutive diagnoses are recorded from the dataset as input and the sixth progressive visual field diagnosis is matched with the prediction of the Bi-RM. The precision metrics of the Bi-RM are validated in association with the linear regression algorithm (LR) and term memory (TM) technique. The total prediction error of the Bi-RM is significantly less than those of LR and TM. In the class prediction, Bi-RM depicts the least prediction error in all three methods in most of the testing cases. In addition, Bi-RM is not impacted by the reliability keys and the glaucoma degree.

摘要

深度学习模型通常用于从空间数据中学习,只有少数研究提出利用深度学习模型来预测青光眼的病情进展时间。在本文中,我们提出了一种双向递归深度学习模型(Bi-RM)来检测前瞻性进行性视野诊断。来自3321个样本的5413只不同眼睛的数据集被用作学习阶段数据集,1272只眼睛用于测试。从数据集中记录连续五次诊断作为输入,并将第六次进行性视野诊断与Bi-RM的预测相匹配。Bi-RM的精确性指标与线性回归算法(LR)和长期记忆(TM)技术相关联进行了验证。Bi-RM的总预测误差明显小于LR和TM的总预测误差。在类别预测中,在大多数测试案例中,Bi-RM在所有三种方法中描绘出的预测误差最小。此外,Bi-RM不受可靠性关键因素和青光眼程度的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4dd/10052760/ce56ed7a9597/jpm-13-00390-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验