Department of Biomedical Engineering, University of California, Los Angeles, CA, USA.
Neuroimage. 2011 May 15;56(2):544-53. doi: 10.1016/j.neuroimage.2010.11.002. Epub 2010 Nov 10.
Machine learning (ML) has become a popular tool for mining functional neuroimaging data, and there are now hopes of performing such analyses efficiently in real-time. Towards this goal, we compared accuracy of six different ML algorithms applied to neuroimaging data of persons engaged in a bivariate task, asserting their belief or disbelief of a variety of propositional statements. We performed unsupervised dimension reduction and automated feature extraction using independent component (IC) analysis and extracted IC time courses. Optimization of classification hyperparameters across each classifier occurred prior to assessment. Maximum accuracy was achieved at 92% for Random Forest, followed by 91% for AdaBoost, 89% for Naïve Bayes, 87% for a J48 decision tree, 86% for K*, and 84% for support vector machine. For real-time decoding applications, finding a parsimonious subset of diagnostic ICs might be useful. We used a forward search technique to sequentially add ranked ICs to the feature subspace. For the current data set, we determined that approximately six ICs represented a meaningful basis set for classification. We then projected these six IC spatial maps forward onto a later scanning session within subject. We then applied the optimized ML algorithms to these new data instances, and found that classification accuracy results were reproducible. Additionally, we compared our classification method to our previously published general linear model results on this same data set. The highest ranked IC spatial maps show similarity to brain regions associated with contrasts for belief > disbelief, and disbelief < belief.
机器学习(ML)已成为挖掘功能神经影像学数据的流行工具,现在人们希望能够实时有效地进行此类分析。为此,我们比较了六种不同的 ML 算法在从事二元任务的个体的神经影像学数据中的准确性,这些任务要求他们断言对各种命题陈述的相信或不相信。我们使用独立成分(IC)分析进行无监督降维和自动特征提取,并提取了 IC 时程。在评估之前,对每个分类器的分类超参数进行了优化。随机森林的最大准确率达到 92%,其次是自适应增强(AdaBoost)的 91%、朴素贝叶斯(Naïve Bayes)的 89%、J48 决策树的 87%、K*的 86%和支持向量机(SVM)的 84%。对于实时解码应用,找到一个简洁的诊断性 IC 子集可能很有用。我们使用前向搜索技术依次向特征子空间添加排名较高的 IC。对于当前数据集,我们确定大约六个 IC 代表了分类的一个有意义的基础集。然后,我们将这些六个 IC 空间图向前投影到个体内的后续扫描会话中。然后,我们将优化后的 ML 算法应用于这些新数据实例,发现分类准确性结果是可重复的。此外,我们将我们的分类方法与我们之前在同一数据集上发表的一般线性模型结果进行了比较。排名最高的 IC 空间图与与相信>不相信、不相信<相信相对应的大脑区域相似。