Suppr超能文献

Etv1 失活揭示了本体感受器亚类,这些亚类反映了肌肉靶标中 NT3 表达的水平。

Etv1 inactivation reveals proprioceptor subclasses that reflect the level of NT3 expression in muscle targets.

机构信息

Department of Neuroscience, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.

出版信息

Neuron. 2013 Mar 20;77(6):1055-68. doi: 10.1016/j.neuron.2013.01.015.

Abstract

The organization of spinal reflex circuits relies on the specification of distinct classes of proprioceptive sensory neurons (pSN), but the factors that drive such diversity remain unclear. We report here that pSNs supplying distinct skeletal muscles differ in their dependence on the ETS transcription factor Etv1 for their survival and differentiation. The status of Etv1-dependence is linked to the location of proprioceptor muscle targets: pSNs innervating hypaxial and axial muscles depend critically on Etv1 for survival, whereas those innervating certain limb muscles are resistant to Etv1 inactivation. The level of NT3 expression in individual muscles correlates with Etv1-dependence and the loss of pSNs triggered by Etv1 inactivation can be prevented by elevating the level of muscle-derived NT3-revealing a TrkC-activated Etv1-bypass pathway. Our findings support a model in which the specification of aspects of pSN subtype character is controlled by variation in the level of muscle NT3 expression and signaling.

摘要

脊髓反射回路的组织依赖于特定类别本体感觉神经元(pSN)的特异性,但驱动这种多样性的因素仍不清楚。我们在这里报告,供应不同骨骼肌的 pSN 在其生存和分化对 ETS 转录因子 Etv1 的依赖性方面存在差异。Etv1 依赖性的状态与本体感受器肌肉靶位的位置有关:支配腹侧和轴性肌肉的 pSN 对 Etv1 的生存至关重要,而支配某些肢体肌肉的 pSN 则对 Etv1 失活有抗性。个体肌肉中 NT3 的表达水平与 Etv1 依赖性相关,并且由 Etv1 失活引发的 pSN 丧失可以通过提高肌肉衍生的 NT3 水平来预防,这揭示了一种 TrkC 激活的 Etv1 旁路途径。我们的研究结果支持这样一种模型,即 pSN 亚型特征的某些方面的特异性是由肌肉 NT3 表达和信号的水平变化控制的。

相似文献

5
Formation of a full complement of cranial proprioceptors requires multiple neurotrophins.
Dev Dyn. 2000 Jun;218(2):359-70. doi: 10.1002/(SICI)1097-0177(200006)218:2<359::AID-DVDY9>3.0.CO;2-L.
6
Muscle-selective RUNX3 dependence of sensorimotor circuit development.
Development. 2019 Oct 24;146(20):dev181750. doi: 10.1242/dev.181750.
7
Molecular identity of proprioceptor subtypes innervating different muscle groups in mice.
Nat Commun. 2022 Nov 11;13(1):6867. doi: 10.1038/s41467-022-34589-8.
8
Neurotrophin-3 and trkC in muscle are non-essential for the development of mouse muscle spindles.
Neuroreport. 1998 Mar 30;9(5):905-9. doi: 10.1097/00001756-199803300-00026.
9
The making of a proprioceptor: a tale of two identities.
Trends Neurosci. 2023 Dec;46(12):1083-1094. doi: 10.1016/j.tins.2023.09.008. Epub 2023 Oct 17.
10
Development and specification of muscle sensory neurons.
Curr Opin Neurobiol. 1999 Aug;9(4):405-9. doi: 10.1016/S0959-4388(99)80061-0.

引用本文的文献

1
Population structure, selection signal and introgression of gamecocks revealed by whole genome sequencing.
J Anim Sci Biotechnol. 2025 Feb 8;16(1):22. doi: 10.1186/s40104-025-01154-4.
2
The Role of Pea3 Transcription Factor Subfamily in the Nervous System.
Mol Neurobiol. 2025 Mar;62(3):3293-3304. doi: 10.1007/s12035-024-04432-w. Epub 2024 Sep 13.
3
Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia.
Sci Adv. 2024 Jun 21;10(25):eadj9173. doi: 10.1126/sciadv.adj9173.
4
Electrophysiological Properties of Proprioception-Related Neurons in the Intermediate Thoracolumbar Spinal Cord.
eNeuro. 2024 Apr 26;11(4). doi: 10.1523/ENEURO.0331-23.2024. Print 2024 Apr.
5
A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes.
Cell. 2024 Mar 14;187(6):1508-1526.e16. doi: 10.1016/j.cell.2024.02.006. Epub 2024 Mar 4.
7
Caldendrin Is a Repressor of PIEZO2 Channels and Touch Sensation in Mice.
J Neurosci. 2024 Mar 6;44(10):e1402232023. doi: 10.1523/JNEUROSCI.1402-23.2023.
8
Distinct roles of spinal commissural interneurons in transmission of contralateral sensory information.
Curr Biol. 2023 Aug 21;33(16):3452-3464.e4. doi: 10.1016/j.cub.2023.07.014. Epub 2023 Aug 1.
9
Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia.
bioRxiv. 2023 Jul 5:2023.07.04.547740. doi: 10.1101/2023.07.04.547740.
10
Optogenetic and Chemogenic Control of Pain Signaling: Molecular Markers.
Int J Mol Sci. 2023 Jun 16;24(12):10220. doi: 10.3390/ijms241210220.

本文引用的文献

1
Scaling proprioceptor gene transcription by retrograde NT3 signaling.
PLoS One. 2012;7(9):e45551. doi: 10.1371/journal.pone.0045551. Epub 2012 Sep 19.
2
Positional differences of axon growth rates between sensory neurons encoded by Runx3.
EMBO J. 2012 Sep 12;31(18):3718-29. doi: 10.1038/emboj.2012.228. Epub 2012 Aug 17.
3
Spatial organization of cortical and spinal neurons controlling motor behavior.
Curr Opin Neurobiol. 2012 Oct;22(5):812-21. doi: 10.1016/j.conb.2012.07.002. Epub 2012 Jul 27.
4
Molecular interactions underlying the specification of sensory neurons.
Trends Neurosci. 2012 Jun;35(6):373-81. doi: 10.1016/j.tins.2012.03.006. Epub 2012 Apr 18.
5
Motor neurons and the sense of place.
Neuron. 2011 Nov 3;72(3):419-24. doi: 10.1016/j.neuron.2011.10.021.
6
Motor neuron position and topographic order imposed by β- and γ-catenin activities.
Cell. 2011 Oct 28;147(3):641-52. doi: 10.1016/j.cell.2011.09.037.
7
Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation.
J Neurosci. 2011 Jul 6;31(27):9789-99. doi: 10.1523/JNEUROSCI.0901-11.2011.
8
Clarke's column neurons as the focus of a corticospinal corollary circuit.
Nat Neurosci. 2010 Oct;13(10):1233-9. doi: 10.1038/nn.2637. Epub 2010 Sep 12.
9
Motor neuron diversity in development and disease.
Annu Rev Neurosci. 2010;33:409-40. doi: 10.1146/annurev.neuro.051508.135722.
10
A robust and high-throughput Cre reporting and characterization system for the whole mouse brain.
Nat Neurosci. 2010 Jan;13(1):133-40. doi: 10.1038/nn.2467. Epub 2009 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验