Suppr超能文献

镫骨膜的频率依赖性特性有助于在耳蜗中进行能量传递和放大。

Frequency-dependent properties of the tectorial membrane facilitate energy transmission and amplification in the cochlea.

机构信息

School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.

出版信息

Biophys J. 2013 Mar 19;104(6):1357-66. doi: 10.1016/j.bpj.2013.02.002.

Abstract

The remarkable sensitivity, frequency selectivity, and dynamic range of the mammalian cochlea relies on longitudinal transmission of minuscule amounts of energy as passive, pressure-driven, basilar membrane (BM) traveling waves. These waves are actively amplified at frequency-specific locations by a mechanism that involves interaction between the BM and another extracellular matrix, the tectorial membrane (TM). From mechanical measurements of isolated segments of the TM, we made the important new (to our knowledge) discovery that the stiffness of the TM is reduced when it is mechanically stimulated at physiologically relevant magnitudes and at frequencies below their frequency place in the cochlea. The reduction in stiffness functionally uncouples the TM from the organ of Corti, thereby minimizing energy losses during passive traveling-wave propagation. Stiffening and decreased viscosity of the TM at high stimulus frequencies can potentially facilitate active amplification, especially in the high-frequency, basal turn, where energy loss due to internal friction within the TM is less than in the apex. This prediction is confirmed by neural recordings from several frequency regions of the cochlea.

摘要

哺乳动物耳蜗的显著灵敏度、频率选择性和动态范围依赖于极少量能量的纵向传输,这种能量以被动的、压力驱动的基底膜(BM)行波形式传播。这些波在特定频率的位置被一种机制主动放大,该机制涉及 BM 和另一种细胞外基质——盖膜(TM)之间的相互作用。从对 TM 的分离片段的机械测量中,我们做出了一个重要的新发现(据我们所知),即当 TM 受到生理相关幅度和低于其在耳蜗中的频率位置的频率的机械刺激时,TM 的刚度降低。这种刚度的降低使 TM 与 Corti 器官功能上解耦,从而在被动行波传播过程中最小化能量损失。在高刺激频率下,TM 的变硬和粘度降低可能有助于主动放大,特别是在高频、基底转,那里由于 TM 内的内部摩擦而导致的能量损失小于顶点。这一预测得到了来自耳蜗几个频率区域的神经记录的证实。

相似文献

2
Longitudinally propagating traveling waves of the mammalian tectorial membrane.哺乳动物盖膜的纵向传播行波
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16510-5. doi: 10.1073/pnas.0703665104. Epub 2007 Oct 9.
3
Longitudinal spread of mechanical excitation through tectorial membrane traveling waves.机械刺激通过盖膜行波的纵向传播。
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12968-73. doi: 10.1073/pnas.1511620112. Epub 2015 Oct 5.
7
Basilar membrane and tectorial membrane stiffness in the CBA/CaJ mouse.CBA/CaJ小鼠的基底膜和盖膜硬度
J Assoc Res Otolaryngol. 2014 Oct;15(5):675-94. doi: 10.1007/s10162-014-0463-y. Epub 2014 May 28.

引用本文的文献

6
Drug Diffusion Along an Intact Mammalian Cochlea.药物沿完整哺乳动物耳蜗的扩散。
Front Cell Neurosci. 2019 Apr 26;13:161. doi: 10.3389/fncel.2019.00161. eCollection 2019.
9
The Tectorial Membrane: Mechanical Properties and Functions.《听骨膜:力学特性与功能》
Cold Spring Harb Perspect Med. 2019 Oct 1;9(10):a033514. doi: 10.1101/cshperspect.a033514.

本文引用的文献

1
The spatial pattern of cochlear amplification.耳蜗放大的空间模式。
Neuron. 2012 Dec 6;76(5):989-97. doi: 10.1016/j.neuron.2012.09.031.
4
Dual traveling waves in an inner ear model with two degrees of freedom.具有两个自由度的内耳模型中的双行波。
Phys Rev Lett. 2011 Aug 19;107(8):088101. doi: 10.1103/PhysRevLett.107.088101. Epub 2011 Aug 16.
5
Auditory mechanics of the tectorial membrane and the cochlear spiral.盖膜与耳蜗螺旋的听觉力学
Curr Opin Otolaryngol Head Neck Surg. 2011 Oct;19(5):382-7. doi: 10.1097/MOO.0b013e32834a5bc9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验