Suppr超能文献

基于 L1 范数的共空间模式。

L1-norm-based common spatial patterns.

机构信息

Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu, China.

出版信息

IEEE Trans Biomed Eng. 2012 Mar;59(3):653-62. doi: 10.1109/TBME.2011.2177523. Epub 2011 Nov 29.

Abstract

Common spatial patterns (CSP) is a commonly used method of spatial filtering for multichannel electroencephalogram (EEG) signals. The formulation of the CSP criterion is based on variance using L2-norm, which implies that CSP is sensitive to outliers. In this paper, we propose a robust version of CSP, called CSP-L1, by maximizing the ratio of filtered dispersion of one class to the other class, both of which are formulated by using L1-norm rather than L2-norm. The spatial filters of CSP-L1 are obtained by introducing an iterative algorithm, which is easy to implement and is theoretically justified. CSP-L1 is robust to outliers. Experiment results on a toy example and datasets of BCI competitions demonstrate the efficacy of the proposed method.

摘要

共空间模式(CSP)是一种常用的多通道脑电图(EEG)信号空间滤波方法。CSP 准则的公式是基于 L2-范数的方差,这意味着 CSP 对离群值很敏感。在本文中,我们提出了一种 CSP 的稳健版本,称为 CSP-L1,通过最大化一类的滤波方差与另一类的比值来实现,这两类都是通过使用 L1-范数而不是 L2-范数来构建的。CSP-L1 的空间滤波器通过引入一种迭代算法来获得,该算法易于实现,并且在理论上是合理的。CSP-L1 对离群值具有鲁棒性。在一个玩具示例和 BCI 竞赛数据集上的实验结果证明了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验