Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu, China.
IEEE Trans Biomed Eng. 2012 Mar;59(3):653-62. doi: 10.1109/TBME.2011.2177523. Epub 2011 Nov 29.
Common spatial patterns (CSP) is a commonly used method of spatial filtering for multichannel electroencephalogram (EEG) signals. The formulation of the CSP criterion is based on variance using L2-norm, which implies that CSP is sensitive to outliers. In this paper, we propose a robust version of CSP, called CSP-L1, by maximizing the ratio of filtered dispersion of one class to the other class, both of which are formulated by using L1-norm rather than L2-norm. The spatial filters of CSP-L1 are obtained by introducing an iterative algorithm, which is easy to implement and is theoretically justified. CSP-L1 is robust to outliers. Experiment results on a toy example and datasets of BCI competitions demonstrate the efficacy of the proposed method.
共空间模式(CSP)是一种常用的多通道脑电图(EEG)信号空间滤波方法。CSP 准则的公式是基于 L2-范数的方差,这意味着 CSP 对离群值很敏感。在本文中,我们提出了一种 CSP 的稳健版本,称为 CSP-L1,通过最大化一类的滤波方差与另一类的比值来实现,这两类都是通过使用 L1-范数而不是 L2-范数来构建的。CSP-L1 的空间滤波器通过引入一种迭代算法来获得,该算法易于实现,并且在理论上是合理的。CSP-L1 对离群值具有鲁棒性。在一个玩具示例和 BCI 竞赛数据集上的实验结果证明了该方法的有效性。