Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
Ann N Y Acad Sci. 2013 Mar;1279(1):154-63. doi: 10.1111/nyas.12052.
Current dogma states that meaningful recovery of function after spinal cord injury (SCI) will likely require a combination of therapeutic interventions comprised of regenerative/neuroprotective transplants, addition of neurotrophic factors, elimination of inhibitory molecules, functional sensorimotor training, and/or stimulation of paralyzed muscles or spinal circuits. We routinely use (1) peripheral nerve grafts to support and direct axonal regeneration across an incomplete cervical or complete thoracic transection injury, (2) matrix modulation with chondroitinase (ChABC) to facilitate axonal extension beyond the distal graft-spinal cord interface, and (3) exercise, such as forced wheel walking, bicycling, or step training on a treadmill. We and others have demonstrated an increase in spinal cord levels of endogenous neurotrophic factors with exercise, which may be useful in facilitating elongation and/or synaptic activity of regenerating axons and plasticity of spinal neurons below the level of injury.
目前的教条认为,脊髓损伤(SCI)后功能的有意义恢复可能需要多种治疗干预的结合,包括再生/神经保护移植、添加神经营养因子、消除抑制性分子、感觉运动功能训练,以及/或瘫痪肌肉或脊髓回路的刺激。我们通常使用(1)外周神经移植物来支持和引导不完全颈段或完全胸段横断损伤的轴突再生,(2)用软骨素酶(ChABC)进行基质调节,以促进轴突在远端移植物-脊髓界面以外的延伸,以及(3)运动,如强制轮式行走、骑自行车或在跑步机上进行踏步训练。我们和其他人已经证明,运动可以增加脊髓内源性神经营养因子的水平,这可能有助于促进再生轴突的伸长和/或突触活动以及损伤水平以下脊髓神经元的可塑性。