Suppr超能文献

视网膜神经纤维层的反射斑显示轴突活动。

Reflectance speckle of retinal nerve fiber layer reveals axonal activity.

机构信息

Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33136, USA.

出版信息

Invest Ophthalmol Vis Sci. 2013 Apr 12;54(4):2616-23. doi: 10.1167/iovs.12-11347.

Abstract

PURPOSE

This study investigated the retinal nerve fiber layer (RNFL) reflectance speckle and tested the hypothesis that temporal change of RNFL speckle reveals axonal dynamic activity.

METHODS

RNFL reflectance speckle of isolated rat retinas was studied with monochromatic illumination. A series of reflectance images was collected every 5 seconds for approximately 15 minutes. Correlation coefficients (CC) of selected areas between a reference and subsequent images were calculated and plotted as a function of the time intervals between images. An exponential function fit to the time course was used to evaluate temporal change of speckle pattern. To relate temporal change of speckle to axonal activity, in vitro living retina perfused at a normal (34°C) and a lower (24°C) temperature, paraformaldehyde-fixed retina, and retina treated with microtubule depolymerization were used.

RESULTS

RNFL reflectance was not uniform; rather nerve fiber bundles had a speckled texture that changed with time. In normally perfused retina, the time constant of the CC change was 0.56 ± 0.26 minutes. In retinas treated with lower temperature and microtubule depolymerization, the time constants increased by two to four times, indicating that the speckle pattern changed more slowly. The speckled texture in fixed retina was stationary.

CONCLUSIONS

Fixation stops axonal activity; treatments with either lower temperature or microtubule depolymerization are known to decrease axonal transport. The results obtained in this study suggest that temporal change of RNFL speckle reveals structural change due to axonal activity. Assessment of RNFL reflectance speckle may offer a new means of evaluating axonal function.

摘要

目的

本研究探讨了视网膜神经纤维层(RNFL)反射斑纹,并检验了以下假说,即 RNFL 斑纹的时间变化揭示了轴突的动态活动。

方法

使用单色照明研究分离的大鼠视网膜的 RNFL 反射斑纹。在大约 15 分钟内,每隔 5 秒采集一系列反射图像。计算所选区域在参考图像和后续图像之间的相关系数(CC),并将其作为图像之间时间间隔的函数绘制。使用指数函数拟合时间过程来评估斑纹图案的时间变化。为了将斑纹的时间变化与轴突活性相关联,使用在正常(34°C)和较低(24°C)温度下灌流的体外活视网膜、多聚甲醛固定的视网膜和用微管解聚处理的视网膜。

结果

RNFL 反射不均匀;相反,神经纤维束具有随时间变化的斑纹纹理。在正常灌流的视网膜中,CC 变化的时间常数为 0.56±0.26 分钟。在温度较低和微管解聚处理的视网膜中,时间常数增加了两到四倍,表明斑纹图案变化较慢。固定视网膜中的斑纹纹理是静止的。

结论

固定会停止轴突活动;低温或微管解聚处理已知会降低轴突运输。本研究的结果表明,RNFL 斑纹的时间变化揭示了由于轴突活动引起的结构变化。评估 RNFL 反射斑纹可能提供一种评估轴突功能的新方法。

相似文献

1
Reflectance speckle of retinal nerve fiber layer reveals axonal activity.
Invest Ophthalmol Vis Sci. 2013 Apr 12;54(4):2616-23. doi: 10.1167/iovs.12-11347.
2
Temporal change of retinal nerve fiber layer reflectance speckle in normal and hypertensive retinas.
Exp Eye Res. 2019 Sep;186:107738. doi: 10.1016/j.exer.2019.107738. Epub 2019 Jul 17.
3
Microtubule contribution to the reflectance of the retinal nerve fiber layer.
Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5363-7. doi: 10.1167/iovs.06-0451.
6
Reflectance Spectrum and Birefringence of the Retinal Nerve Fiber Layer With Hypertensive Damage of Axonal Cytoskeleton.
Invest Ophthalmol Vis Sci. 2017 Apr 1;58(4):2118-2129. doi: 10.1167/iovs.16-20553.
7
Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina.
Curr Eye Res. 2017 Jun;42(6):936-947. doi: 10.1080/02713683.2016.1262043. Epub 2017 Jan 17.
8
Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas.
Invest Ophthalmol Vis Sci. 2012 Aug 24;53(9):5869-76. doi: 10.1167/iovs.12-10001.
9
Response of the Retinal Nerve Fiber Layer Reflectance and Thickness to Optic Nerve Crush.
Invest Ophthalmol Vis Sci. 2018 Apr 1;59(5):2094-2103. doi: 10.1167/iovs.17-23148.
10
Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas.
Invest Ophthalmol Vis Sci. 2011 Aug 24;52(9):6737-42. doi: 10.1167/iovs.11-7665.

引用本文的文献

2
Focal Loss Analysis of Nerve Fiber Layer Reflectance for Glaucoma Diagnosis.
Transl Vis Sci Technol. 2021 May 3;10(6):9. doi: 10.1167/tvst.10.6.9.
3
Relief of Cystoid Macular Edema-Induced Focal Axonal Compression with Anti-Vascular Endothelial Growth Factor Treatment.
Transl Vis Sci Technol. 2020 Mar 18;9(4):18. doi: 10.1167/tvst.9.4.18. eCollection 2020 Mar.
4
Discovery and clinical translation of novel glaucoma biomarkers.
Prog Retin Eye Res. 2021 Jan;80:100875. doi: 10.1016/j.preteyeres.2020.100875. Epub 2020 Jul 10.
5
Suite of methods for assessing inner retinal temporal dynamics across spatial and temporal scales in the living human eye.
Neurophotonics. 2020 Jan;7(1):015013. doi: 10.1117/1.NPh.7.1.015013. Epub 2020 Mar 14.
6
measurement of organelle motility in human retinal pigment epithelial cells.
Biomed Opt Express. 2019 Jul 19;10(8):4142-4158. doi: 10.1364/BOE.10.004142. eCollection 2019 Aug 1.
7
Temporal change of retinal nerve fiber layer reflectance speckle in normal and hypertensive retinas.
Exp Eye Res. 2019 Sep;186:107738. doi: 10.1016/j.exer.2019.107738. Epub 2019 Jul 17.
8
Changes in fundus reflectivity during myopia development in chickens.
Biomed Opt Express. 2019 Mar 13;10(4):1822-1840. doi: 10.1364/BOE.10.001822. eCollection 2019 Apr 1.
9
Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma.
Bone Res. 2018 Apr 4;6:11. doi: 10.1038/s41413-018-0009-8. eCollection 2018.
10
Biological aspects of axonal damage in glaucoma: A brief review.
Exp Eye Res. 2017 Apr;157:5-12. doi: 10.1016/j.exer.2017.02.006. Epub 2017 Feb 20.

本文引用的文献

1
Speckle in optical coherence tomography.
J Biomed Opt. 1999 Jan;4(1):95-105. doi: 10.1117/1.429925.
2
RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment.
Invest Ophthalmol Vis Sci. 2012 Sep 12;53(10):6102-8. doi: 10.1167/iovs.12-9933.
7
Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas.
Invest Ophthalmol Vis Sci. 2011 Aug 24;52(9):6737-42. doi: 10.1167/iovs.11-7665.
8
Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms.
Neuroscience. 2011 Mar 10;176:1-11. doi: 10.1016/j.neuroscience.2010.12.036. Epub 2010 Dec 25.
10
In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method.
Invest Ophthalmol Vis Sci. 2011 Jan 5;52(1):87-92. doi: 10.1167/iovs.09-4422.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验