Tan Ou, Greenfield David S, Francis Brian A, Varma Rohit, Schuman Joel S, Huang David, Choi Dongseok
Casey Eye Institute, Oregon Health & Science University.
Bascom Palmer Eye Institute, University of Miami.
ArXiv. 2024 Jun 6:arXiv:2406.03663v1.
PRÉCIS: A hybrid deep-learning model combines NFL reflectance and other OCT parameters to improve glaucoma diagnosis.
To investigate if a deep learning model could be used combine nerve fiber layer (NFL) reflectance and other OCT parameters for glaucoma diagnosis.
This is a prospective observational study where of 106 normal subjects and 164 perimetric glaucoma (PG) patients. Peripapillary NFL reflectance map, NFL thickness map, optic head analysis of disc, and macular ganglion cell complex thickness were obtained using spectral domain OCT. A hybrid deep learning model combined a fully connected network (FCN) and a convolution neural network (CNN) to develop to combine those OCT maps and parameters to distinguish normal and PG eyes. Two deep learning models were compared based on whether the NFL reflectance map was used as part of the input or not.
The hybrid deep learning model with reflectance achieved 0.909 sensitivity at 99% specificity and 0.926 at 95%. The overall accuracy was 0.948 with 0.893 sensitivity and 1.000 specificity, and the AROC was 0.979, which is significantly better than the logistic regression models (p < 0.001). The second best model is the hybrid deep learning model w/o reflectance, which also had significantly higher AROC than logistic regression models (p < 0.001). Logistic regression with reflectance model had slightly higher AROC or sensitivity than the other logistic regression model without reflectance (p = 0.024).
Hybrid deep learning model significantly improved the diagnostic accuracy, without or without NFL reflectance. Hybrid deep learning model, combining reflectance/NFL thickness/GCC thickness/ONH parameter, may be a practical model for glaucoma screen purposes.
一种混合深度学习模型结合了神经纤维层(NFL)反射率和其他光学相干断层扫描(OCT)参数,以改善青光眼诊断。
研究深度学习模型是否可用于结合神经纤维层(NFL)反射率和其他OCT参数进行青光眼诊断。
这是一项前瞻性观察性研究,纳入了106名正常受试者和164名周边视野性青光眼(PG)患者。使用光谱域OCT获取视乳头周围NFL反射率图、NFL厚度图、视盘的视乳头分析以及黄斑神经节细胞复合体厚度。一种混合深度学习模型结合了全连接网络(FCN)和卷积神经网络(CNN),以结合这些OCT图和参数来区分正常眼和PG眼。基于是否将NFL反射率图用作输入的一部分,对两种深度学习模型进行了比较。
具有反射率的混合深度学习模型在特异性为99%时灵敏度达到0.909,在特异性为95%时灵敏度为0.926。总体准确率为0.948,灵敏度为0.893,特异性为1.000,曲线下面积(AROC)为0.979,显著优于逻辑回归模型(p < 0.001)。第二好的模型是不具有反射率的混合深度学习模型,其AROC也显著高于逻辑回归模型(p < 0.001)。具有反射率的逻辑回归模型的AROC或灵敏度略高于不具有反射率的其他逻辑回归模型(p = 0.024)。
混合深度学习模型显著提高了诊断准确性,无论是否包含NFL反射率。结合反射率/NFL厚度/神经节细胞复合体(GCC)厚度/视乳头参数的混合深度学习模型可能是用于青光眼筛查目的的实用模型。