Suppr超能文献

使用神经传导研究参数的个体和简单组合来识别和预测糖尿病感觉运动多发性神经病。

Identification and prediction of diabetic sensorimotor polyneuropathy using individual and simple combinations of nerve conduction study parameters.

机构信息

Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.

出版信息

PLoS One. 2013;8(3):e58783. doi: 10.1371/journal.pone.0058783. Epub 2013 Mar 22.

Abstract

OBJECTIVE

Evaluation of diabetic sensorimotor polyneuropathy (DSP) is hindered by the need for complex nerve conduction study (NCS) protocols and lack of predictive biomarkers. We aimed to determine the performance of single and simple combinations of NCS parameters for identification and future prediction of DSP.

MATERIALS AND METHODS

406 participants (61 with type 1 diabetes and 345 with type 2 diabetes) with a broad spectrum of neuropathy, from none to severe, underwent NCS to determine presence or absence of DSP for cross-sectional (concurrent validity) analysis. The 109 participants without baseline DSP were re-evaluated for its future onset (predictive validity). Performance of NCS parameters was compared by area under the receiver operating characteristic curve (AROC).

RESULTS

At baseline there were 246 (60%) Prevalent Cases. After 3.9 years mean follow-up, 25 (23%) of the 109 Prevalent Controls that were followed became Incident DSP Cases. Threshold values for peroneal conduction velocity and sural amplitude potential best identified Prevalent Cases (AROC 0.90 and 0.83, sensitivity 80 and 83%, specificity 89 and 72%, respectively). Baseline tibial F-wave latency, peroneal conduction velocity and the sum of three lower limb nerve conduction velocities (sural, peroneal, and tibial) best predicted 4-year incidence (AROC 0.79, 0.79, and 0.85; sensitivity 79, 70, and 81%; specificity 63, 74 and 77%, respectively).

DISCUSSION

Individual NCS parameters or their simple combinations are valid measures for identification and future prediction of DSP. Further research into the predictive roles of tibial F-wave latencies, peroneal conduction velocity, and sum of conduction velocities as markers of incipient nerve injury is needed to risk-stratify individuals for clinical and research protocols.

摘要

目的

评估糖尿病感觉运动性多发性神经病(DSP)受到复杂神经传导研究(NCS)方案的需要和缺乏预测生物标志物的阻碍。我们旨在确定单个和简单的 NCS 参数组合的性能,用于识别和预测 DSP 的未来。

材料和方法

406 名参与者(61 名 1 型糖尿病和 345 名 2 型糖尿病)具有广泛的神经病变谱,从无到严重,接受 NCS 以确定是否存在 DSP 进行横断面(现况有效性)分析。109 名无基线 DSP 的参与者进行重新评估以确定其未来发病情况(预测有效性)。通过接收者操作特征曲线下的面积(AROC)比较 NCS 参数的性能。

结果

基线时有 246 名(60%)现患病例。在 3.9 年的平均随访后,109 名随访的现患对照中有 25 名(23%)成为新发 DSP 病例。腓肠神经传导速度和腓肠神经感觉电位的阈值值最佳识别现患病例(AROC 0.90 和 0.83,敏感性 80%和 83%,特异性 89%和 72%)。基线胫神经 F 波潜伏期、腓肠神经传导速度和三个下肢神经传导速度之和(腓肠神经、腓肠神经和胫神经)最佳预测 4 年发病率(AROC 0.79、0.79 和 0.85;敏感性 79%、70%和 81%;特异性 63%、74%和 77%)。

讨论

个体 NCS 参数或其简单组合是识别和预测 DSP 的有效措施。需要进一步研究胫神经 F 波潜伏期、腓肠神经传导速度和传导速度之和作为神经损伤初始标志物的预测作用,以对个体进行风险分层,以便进行临床和研究方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验