Suppr超能文献

评估脾肿大:脾脏的自动容积分析。

Assessing splenomegaly: automated volumetric analysis of the spleen.

机构信息

Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 111 Michigan Avenue NW, Washington DC 20010, USA.

出版信息

Acad Radiol. 2013 Jun;20(6):675-84. doi: 10.1016/j.acra.2013.01.011. Epub 2013 Mar 25.

Abstract

RATIONALE AND OBJECTIVES

To define systematic volumetric thresholds to identify and grade splenomegaly and retrospectively evaluate the performance of radiologists to assess splenomegaly in computed tomography (CT) image data.

MATERIALS AND METHODS

A clinical tool was developed to segment spleens from 172 contrast-enhanced clinical CT studies. There were 45 normal and 127 splenomegaly cases confirmed by radiological reports. Spleen volumes were compared to manual measurements using overlap/error. Volumetric thresholds for mild/massive splenomegaly were defined at 1/2.5 standard deviations above the average splenic volume of the healthy population. The thresholds were validated against consensus reports. The performance of radiologists in assessing splenomegaly was retrospectively evaluated.

RESULTS

The automated segmentation of spleens was robust with volume overlap/error of 95.2/3.3%. There were no significant differences (P > .2) between manual and automated segmentations for either normal/splenomegaly subgroups. Comparable correlations between interobserver and manual-automated measurements were found (r = 0.99 for all). The average volume of normal spleens was 236.89 ± 77.58 mL. For splenomegaly, average volume was 1004.75 ± 644.27 mL. Volumetric thresholds of 314.47/430.84 mL were used to define mild/massive splenomegaly (±18.86 mL, 95% CI). Radiologists disagreed in 23.25% (n = 40) of the diagnosed cases. The area under the receiver operating characteristic curve of the volumetric criterion for splenomegaly detection was 0.96. Using the volumetric thresholds as the reference standard, the sensitivity of radiologists in detecting all/mild/massive splenomegaly was 95.0/66.6/99.0% at 78.0% specificity, respectively.

CONCLUSION

Thresholds for the identification and grading of splenomegaly from automatic volumetric spleen assessment were introduced. The volumetric thresholds match well with clinical interpretations for splenomegaly and may improve splenomegaly detection compared with splenic cephalocaudal height measurements or visual inspection commonly used in current clinical practice.

摘要

背景和目的

定义系统的体积阈值以识别和分级脾肿大,并回顾性评估放射科医生在 CT 图像数据中评估脾肿大的表现。

材料和方法

开发了一种临床工具来分割 172 例增强对比度的临床 CT 研究中的脾脏。有 45 例正常和 127 例脾肿大病例经放射学报告证实。使用重叠/误差比较脾脏体积与手动测量。轻度/重度脾肿大的体积阈值定义为健康人群平均脾脏体积的 1/2.5 标准差以上。将阈值与共识报告进行验证。回顾性评估放射科医生评估脾肿大的表现。

结果

脾脏的自动分割具有稳健的体积重叠/误差为 95.2/3.3%。正常/脾肿大亚组的手动和自动分割之间没有显著差异(P>.2)。观察者间和手动-自动测量之间也发现了相似的相关性(所有 r = 0.99)。正常脾脏的平均体积为 236.89±77.58mL。脾肿大时,平均体积为 1004.75±644.27mL。使用 314.47/430.84mL 的体积阈值来定义轻度/重度脾肿大(±18.86mL,95%CI)。放射科医生在 23.25%(n=40)的诊断病例中存在分歧。用于检测脾肿大的体积标准的受试者工作特征曲线下面积为 0.96。使用体积阈值作为参考标准,放射科医生在以 78.0%的特异性检测所有/轻度/重度脾肿大时的敏感性分别为 95.0/66.6/99.0%。

结论

引入了自动体积脾脏评估识别和分级脾肿大的阈值。体积阈值与临床对脾肿大的解释吻合良好,与当前临床实践中常用的脾脏前后径测量或目视检查相比,可能会提高脾肿大的检测率。

相似文献

1
Assessing splenomegaly: automated volumetric analysis of the spleen.
Acad Radiol. 2013 Jun;20(6):675-84. doi: 10.1016/j.acra.2013.01.011. Epub 2013 Mar 25.
2
Assessing hepatomegaly: automated volumetric analysis of the liver.
Acad Radiol. 2012 May;19(5):588-98. doi: 10.1016/j.acra.2012.01.015. Epub 2012 Feb 22.
5
Volumetric response classification in metastatic solid tumors on MSCT: initial results in a whole-body setting.
Eur J Radiol. 2013 Oct;82(10):e567-73. doi: 10.1016/j.ejrad.2013.05.030. Epub 2013 Jul 1.
7
The orthogonal measurements approach in estimating spleen size on CT images.
Diagn Interv Radiol. 2020 Jan;26(1):5-10. doi: 10.5152/dir.2019.18587.
8
A 3D level sets method for segmenting the mouse spleen and follicles in volumetric microCT images.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2332-6. doi: 10.1109/IEMBS.2006.260127.
10
Automated Deep Learning Artificial Intelligence Tool for Spleen Segmentation on CT: Defining Volume-Based Thresholds for Splenomegaly.
AJR Am J Roentgenol. 2023 Nov;221(5):611-619. doi: 10.2214/AJR.23.29478. Epub 2023 Jun 28.

引用本文的文献

2
Development and validation of an interpretable machine learning model for standard spleen volume prediction.
Quant Imaging Med Surg. 2025 Jun 6;15(6):5160-5176. doi: 10.21037/qims-2024-2954. Epub 2025 Jun 3.
3
Multimodal imaging features to diagnose abdominal complications of sickle cell disease.
Abdom Radiol (NY). 2025 Jun 30. doi: 10.1007/s00261-025-05083-8.
4
Malaria-Associated Spontaneous Splenic Rupture With Coagulopathy and Hemodynamic Compromise: A Case Report.
Cureus. 2025 Jan 17;17(1):e77605. doi: 10.7759/cureus.77605. eCollection 2025 Jan.
7
Long-term treatment with selective PI3Kδ inhibitor leniolisib in adults with activated PI3Kδ syndrome.
Blood Adv. 2024 Jun 25;8(12):3092-3108. doi: 10.1182/bloodadvances.2023011000.
10
Measurement of portal vein indices and splenic index by ultrasound and their association with gastroesophageal varices in cirrhosis of liver.
Ann Med Surg (Lond). 2023 Nov 7;85(12):5926-5931. doi: 10.1097/MS9.0000000000001483. eCollection 2023 Dec.

本文引用的文献

2
3
[Automated detection and volumetric segmentation of the spleen in CT scans].
Rofo. 2012 Aug;184(8):734-9. doi: 10.1055/s-0031-1299495. Epub 2012 May 22.
4
Assessing hepatomegaly: automated volumetric analysis of the liver.
Acad Radiol. 2012 May;19(5):588-98. doi: 10.1016/j.acra.2012.01.015. Epub 2012 Feb 22.
5
Splenomegaly: investigation, diagnosis and management.
Blood Rev. 2009 May;23(3):105-11. doi: 10.1016/j.blre.2008.10.001. Epub 2008 Dec 4.
7
Splenic lesions: FNA findings in 48 cases.
Cytopathology. 2007 Jun;18(3):151-6. doi: 10.1111/j.1365-2303.2007.00414.x.
10
Evaluation of splenomegaly in the hepatosplenic form of mansonic schistosomiasis.
Acta Trop. 2007 Mar;101(3):183-6. doi: 10.1016/j.actatropica.2007.01.004. Epub 2007 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验