INSERM, U970, Paris Cardiovascular Research Center PARCC, Paris, France.
Circ Res. 2013 May 10;112(10):1323-33. doi: 10.1161/CIRCRESAHA.112.300818. Epub 2013 Mar 27.
Endothelial activation and apoptosis release membrane-shed microparticles (EMP) that emerge as important biological effectors.
Because laminar shear stress (SS) is a major physiological regulator of endothelial survival, we tested the hypothesis that SS regulates EMP release.
EMP levels were quantified by flow cytometry in medium of endothelial cells subjected to low or high SS (2 and 20 dyne/cm(2)). EMP levels augmented with time in low SS conditions compared with high SS conditions. This effect was sensitive to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Rho kinases inhibitors but unaffected by caspase inhibitors. Low SS-stimulated EMP release was associated with increased endothelial Rho kinases and ERK1/2 activities and cytoskeletal reorganization. Overexpression of constitutively active RhoA stimulated EMP release under high SS. We also examined the effect of nitric oxide (NO) in mediating SS effects. L-NG-nitroarginine methyl ester (L-NAME), but not D-NG-nitroarginine methyl ester, increased high SS-induced EMP levels by 3-fold, whereas the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) decreased it. L-NAME and SNAP did not affect Rho kinases and ERK1/2 activities. Then, we investigated NO effect on membrane remodeling because microparticle release is abolished in ABCA1-deficient cells. ABCA1 expression, which was greater under low SS than under high SS, was augmented by L-NAME under high SS and decreased by SNAP under low SS conditions.
Altogether, these results demonstrate that sustained atheroprone low SS stimulates EMP release through activation of Rho kinases and ERK1/2 pathways, whereas atheroprotective high SS limits EMP release in a NO-dependent regulation of ABCA1 expression and of cytoskeletal reorganization. These findings, therefore, identify endothelial SS as a physiological regulator of microparticle release.
内皮细胞激活和细胞凋亡会释放出膜脱落的微泡(EMP),这些微泡成为重要的生物学效应物。
由于层流切应力(SS)是内皮细胞存活的主要生理调节因子,我们检验了 SS 调节 EMP 释放的假说。
通过流式细胞术在低 SS(2 和 20 达因/厘米 2)或高 SS 条件下培养的内皮细胞的培养基中定量 EMP 水平。与高 SS 条件相比,低 SS 条件下 EMP 水平随时间增加。这种效应对细胞外信号调节蛋白激酶 1 和 2(ERK1/2)和 Rho 激酶抑制剂敏感,但不受半胱天冬酶抑制剂的影响。低 SS 刺激的 EMP 释放与内皮细胞 Rho 激酶和 ERK1/2 活性增加和细胞骨架重排有关。高 SS 下过表达组成性激活的 RhoA 会刺激 EMP 释放。我们还研究了一氧化氮(NO)在介导 SS 效应中的作用。L-NG-硝基精氨酸甲酯(L-NAME),而不是 D-NG-硝基精氨酸甲酯,使高 SS 诱导的 EMP 水平增加了 3 倍,而一氧化氮供体 S-亚硝基-N-乙酰-D,L-青霉胺(SNAP)则降低了它。L-NAME 和 SNAP 不影响 Rho 激酶和 ERK1/2 活性。然后,我们研究了 NO 对膜重塑的影响,因为 ABCA1 缺陷细胞中的微粒释放被消除。在低 SS 下比在高 SS 下表达更多的 ABCA1,在高 SS 下,L-NAME 会增加 ABCA1 的表达,而在低 SS 条件下,SNAP 会降低其表达。
总之,这些结果表明,持续的易患动脉粥样硬化的低 SS 通过激活 Rho 激酶和 ERK1/2 途径刺激 EMP 释放,而保护性高 SS 通过调节 ABCA1 表达和细胞骨架重排来限制 EMP 释放。这些发现因此确定了内皮 SS 作为微粒释放的生理调节因子。