Actuarial Science and Finance, Drake University, Des Moines, IA 50311, U.S.A.
Stat Med. 2013 Sep 10;32(20):3569-89. doi: 10.1002/sim.5782. Epub 2013 Apr 1.
Latent class transition models track how individuals move among latent classes through time, traditionally assuming a complete set of observations for each individual. In this paper, we develop group-based latent class transition models that allow for staggered entry and exit, common in surveys with rolling enrollment designs. Such models are conceptually similar to, but structurally distinct from, pattern mixture models of the missing data literature. We employ group-based latent class transition modeling to conduct an in-depth data analysis of recent trends in chronic disability among the U.S. elderly population. Using activities of daily living data from the National Long-Term Care Survey (NLTCS), 1982-2004, we estimate model parameters using the expectation-maximization algorithm, implemented in SAS PROC IML. Our findings indicate that declines in chronic disability prevalence, observed in the 1980s and 1990s, did not continue in the early 2000s as previous NLTCS cross-sectional analyses have indicated.
潜在类别转移模型追踪个体随时间在潜在类别之间的转移情况,传统上假设每个个体都有完整的观测数据。在本文中,我们开发了基于群组的潜在类别转移模型,允许个体在滚动注册设计的调查中交错进入和退出。这种模型在概念上与缺失数据文献中的模式混合模型相似,但在结构上有所不同。我们采用基于群组的潜在类别转移模型对美国老年人群体中慢性残疾的近期趋势进行深入数据分析。我们使用来自国家长期护理调查(NLTCS)的日常生活活动数据(1982-2004 年),使用 SAS PROC IML 中的期望最大化算法估计模型参数。我们的研究结果表明,在 20 世纪 80 年代和 90 年代观察到的慢性残疾流行率下降,并没有像之前的 NLTCS 横截面分析所表明的那样,在 21 世纪初继续下去。